50 kW Absorption Enhanced Natural Gas Reformer

Jim Stevens ChevronTexaco Technology Ventures May 25, 2005

This presentation does not contain any proprietary or confidential information

Project ID #: FC44

Overview

Timeline

- Start: 10/1/03
- End: 9/31/06
- Percent Complete: 33%

Barriers

- Hydrogen Production
 - A. Fuel Processor CAPEX
 - B. Operation and Maintenance
- Crosscutting Barriers
 - Catalysts
 - Hydrogen Separation
- Fuel Flexible Processors
 - J. Durability
 - K. Emissions
 - L. Hydrogen Purification
 - M. Efficiency
 - N. Cost

Copyright 2005 ChevronTexaco

Budget

- Total Project: \$9.0 MM
 - DOE share: \$5.6 MM
 - CTTV share: \$3.4 MM
- FY04 funding: \$1.4 MM
- FY05 funding: \$1.9 MM

Objectives

- Overall Objective
 - Develop materials, process, and 50 kW natural gas absorption enhanced reformer capable of providing near pure H₂ that meet DOE targets for efficiency and H₂ cost
- 2004 Objectives
 - Develop and test high durability CO₂ sorbents
 - Build and operate two 1kW reformers
 - Model process and demonstrate potential for high efficiency and reduced capital costs

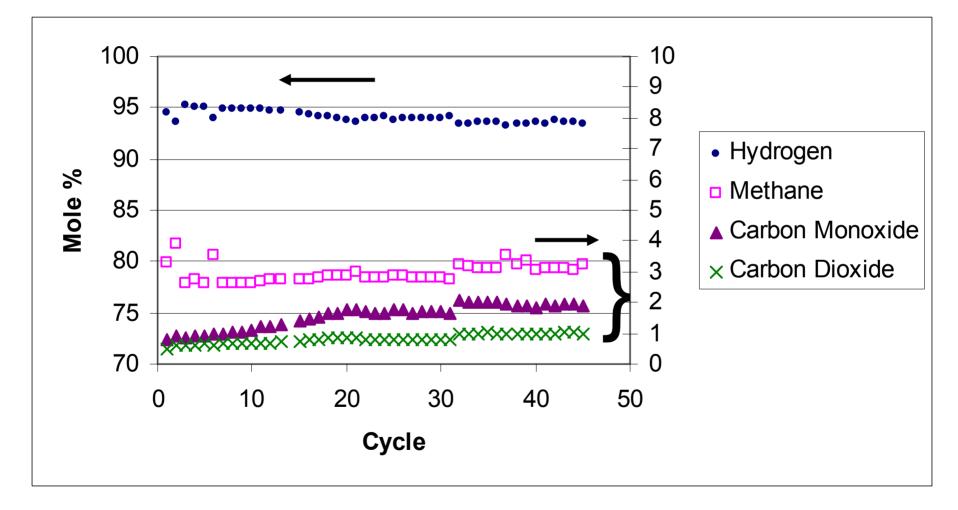
Approach- Absorption Enhanced Reforming

- A. Combine reforming, water gas shift, and CO_2 sorbent in one reactor to produce near pure H₂ with low CO_2 and CO content.
- B. Use methanation to reduce CO and CO₂ to <1ppm.
- C. Develop CO_2 sorbent with 40,000 hour life while maintaining acceptable CO_2 fixing capacity.

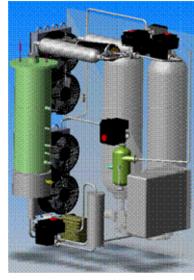
ChevronTexaco Chemistry of AER

$\textbf{CH}_{4} + \textbf{H}_{2}\textbf{O} \ \rightarrow \textbf{3H}_{2} + \textbf{CO Steam Reforming}$

- $H_2O + CO \rightarrow H_2 + CO_2$ Water-gas Shift
 - $\textbf{CO}_{2} \textbf{+} \textbf{CaO} \rightarrow \textbf{CaCO}_{3}$ Carbonation


Reforming Step

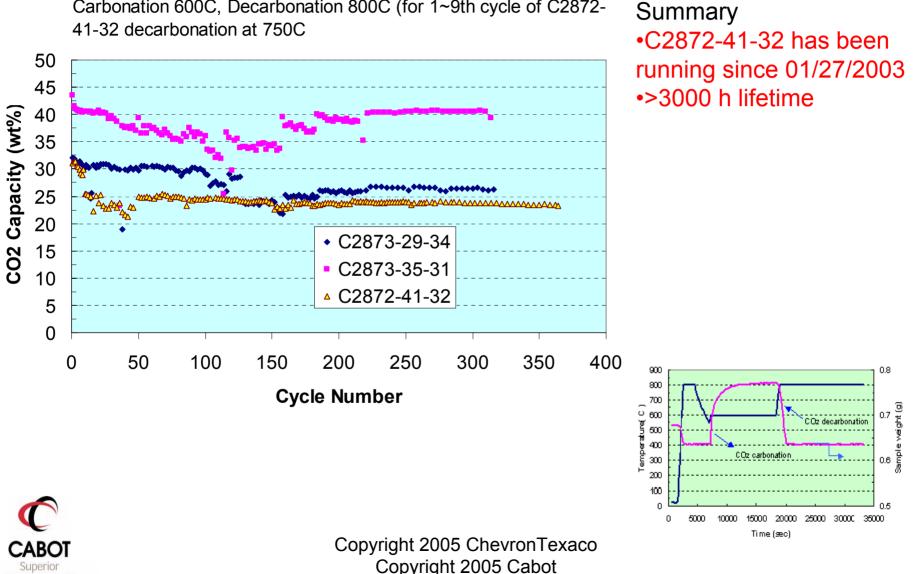
$CH_4 + 2H_2O + CaO \xrightarrow{600\%} 4H_2 + CaCO_3$


Regeneration Step

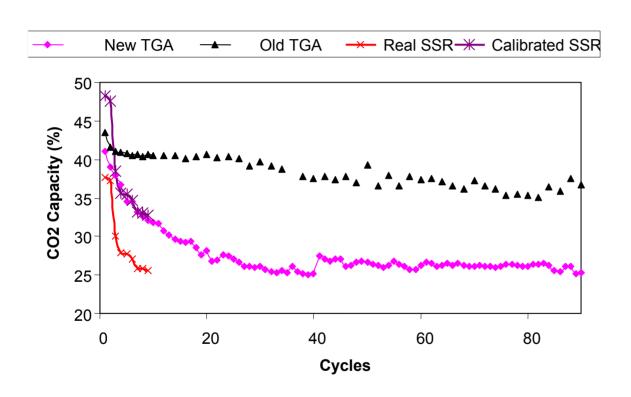
$$CaCO_3 \xrightarrow{800^{\circ}C} CO_2 + CaO$$

Example Reformate Composition

AER Materials Requirements



- Reforming/WGS catalysts active at 600°C
- Reversible Sorbent
 - High CO₂ sorption capacity (>20 wt%)
 - Fast kinetics
 - Long term stability
 - Crush strength (>2.0 lb/mm)
- Scalable sorbent production

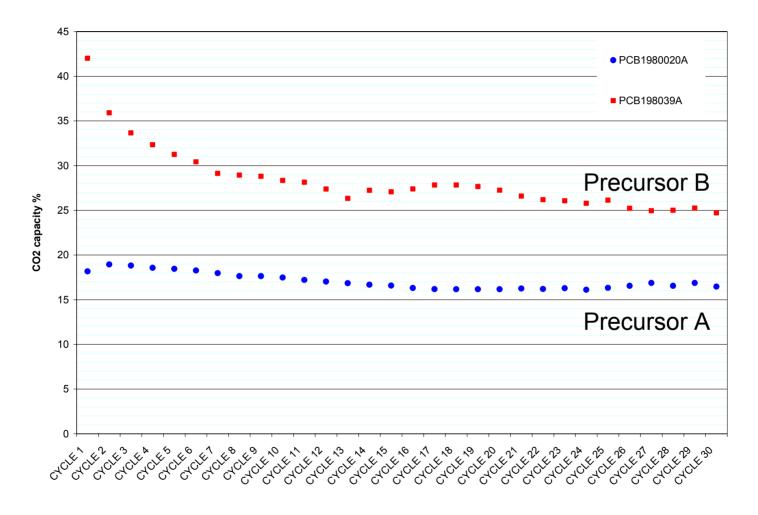

MicroPowders

Long Term Stability of CSMP Sorbent Powders **CT CO₂-TGA Results from Typical Samples**

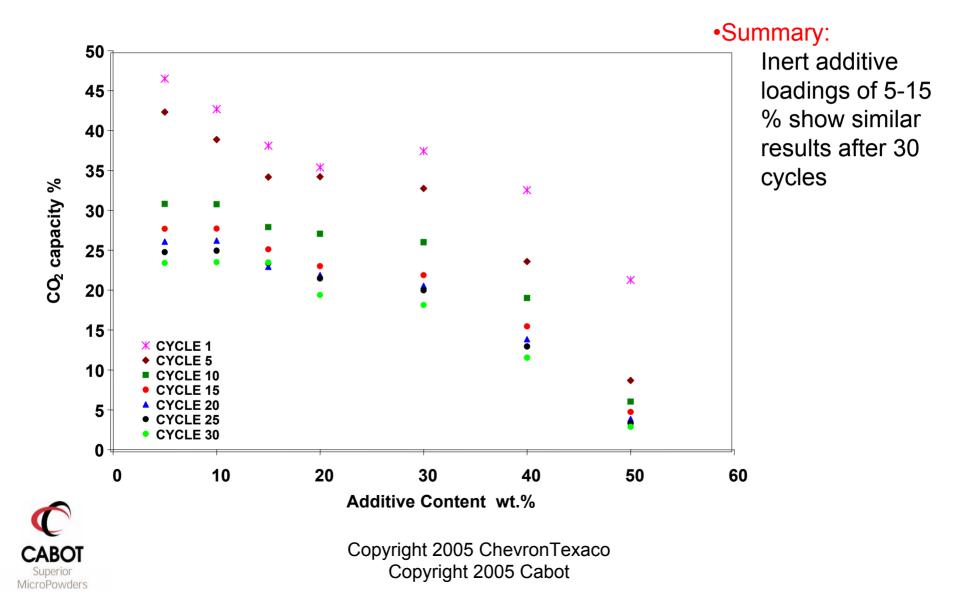
Carbonation 600C, Decarbonation 800C (for 1~9th cycle of C2872-

ChevronTexaco Comparison of CO₂-TGA Testing with Reactor Tests

- More than 225 samples tested since June 2004
 - •111 extrudates
 - •114 powders
 - •30 cycles initial screening


•Selected samples – over 500 cycles, 3000 h

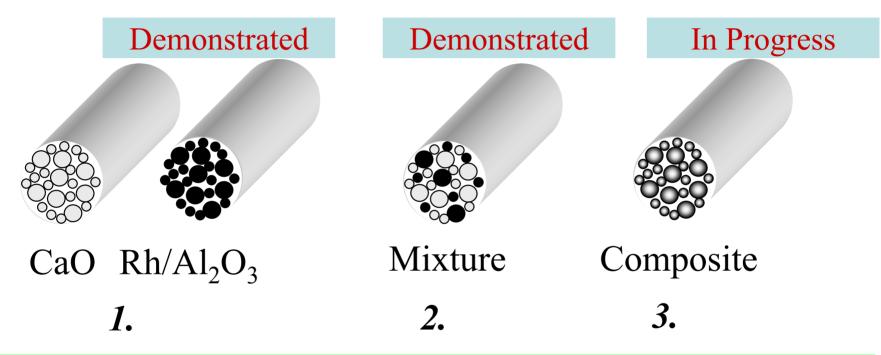
The data from continuous CO₂-TGA cycling test method correlate with the reactor testing results


Effect of Precursor Type on CSMP Sorbent

CO₂-TGA performance

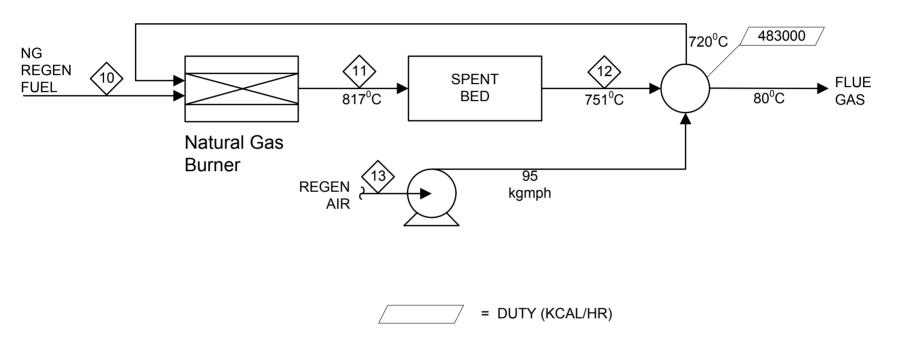
Effect of Inert Additive Content on CSMP Sorbent Performance

Stability of Extrudates



Extrudate A, after 535 cycles

Extrudate B, after 523 cycles


Integrated Materials for AER

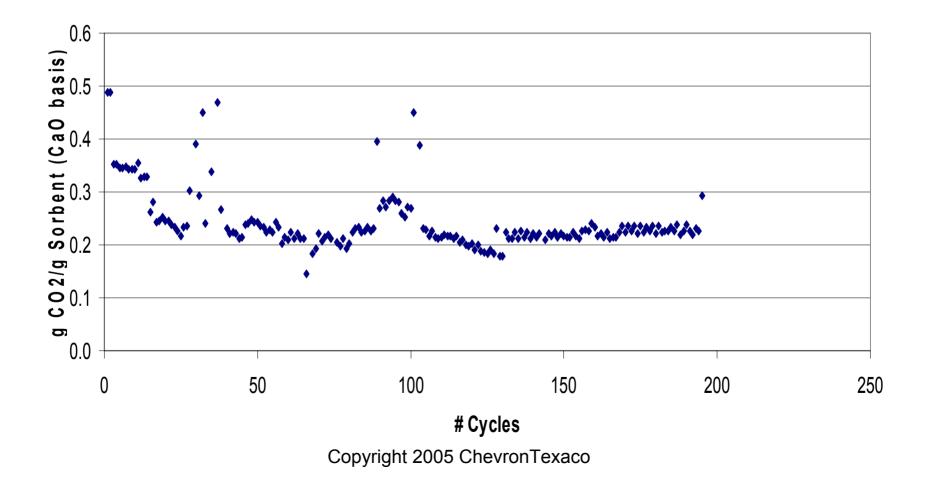
- 1. Sorbent (S) and reforming catalyst (RC) made in a separate pellets
- 2. Sorbent and reforming catalyst made as separate powders
- 3. Sorbent and reforming catalyst made in one particle

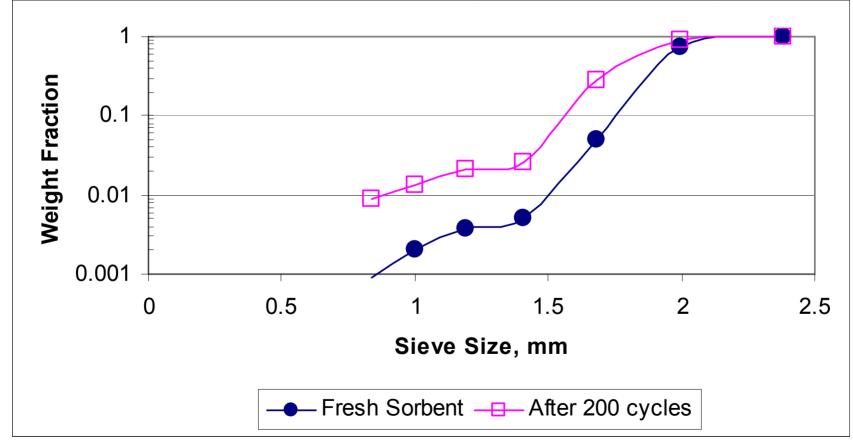
Regeneration Method

SENSIBLE HEAT REGEN- AIR

ChevronTexaco 1 kW Reactor Design

- Simple reactor construction
- Metal fiber burner for combustion during regeneration
- Direct combustion gas/sorbent heat transfer
- Good control of bed temperature.


Constructed and Testing Two 1 kW Reactors


Reviewer Comment: "Durability is a key technical challenge, testing needs to be done under real conditions."

Sorbent Capacity After Multiple Combustion Gas Regenerations

Reviewer Comment: "Durability is a key technical challenge, testing needs to be done under real conditions."

Attrition After 200 Cycles of Reforming/Combustion Gas Regeneration

Reviewer Comment: "No clear plan to expand to large plants or sequestor CO_2 ."

CTTV Working on Large Scale Production for Refineries outside of DOE Grant

Completed Rough Cost Study on Large Fixed Bed Process

Started Study on Entrained Sorbent Reactor

Sequestration of CO₂ outside scope of DOE Grant

More likely feasible for large scale plants

Cabot Actively Marketing Materials

Reviewer Comment: "No need to develop new reforming catalysts, should use commercial reforming catalysts."

Using Engelhard reforming catalyst.
Some development may be required

Major Milestones for DOE Project

Task	Milestone/Decision point	Deliverable	Date
Steam Reforming Catalyst	90% of the thermodynamic equilibrium conversion of methane ,Rh content <0.5 %Rh	Test data report	09/30/04
Integrated catalyst /sorbent	 >50 % CO₂ fixing capacity after 50 cycles >90 % equilibrium conversion of CO 	Test report	09/30/04
Integrated catalyst /sorbent	>98 % H ₂ , CO/CO ₂ < 1% on dry after 50 cycles	Pelletized materials	11/15/04
Integrated catalyst/sorbent	>98 % H ₂ , CO/CO ₂ < 1% after 500 cycles	Pelletized materials	08/15/05
Reactor concept modeling	Predicted efficiency of system > 78% and capital cost less than currently available systems	Written report	07/06/04
Catalyst production scale up	Deliver enough integrated material for one full scale reactor, estimated 175 kg	Pelletized materials	11/15/04
Integrated Catalyst delivery	Deliver enough integrated material for one full scale fuel processor, estimated 350 kg	Pelletized materials	08/15/05
10 kw Reactor Installation	Reactor ready for testing	Reactor installation	11/12/04
Reactor Testing	Reactor meets design criteria	Test Report	08/03/05
Reformer Installation	Stand alone reformer installed in Houston Test area	Reformer Installed	09/15/05
Reformer Testing	Reformer start-up/shut-down cycle testing, transient testing, durability testing.	Test Report	11/08/06

Go/No Go Decision Points

Go/No-Go decision points	Decision review package	Criteria	Date
1	Combined reactor concept and materials performance demonstrated	>98 % H ₂ , CO/CO ₂ < 1% on dry basis after 50 cycles predicted energy efficiency> 78%	11/15/04
2	1 kw Reactor performance evaluation	>98 % H ₂ , CO/CO ₂ < 1% on dry basis after durability testing predicted energy efficiency> 78%	7/30/05
3	Fuel Processor Performance	>98 % H ₂ , CO/CO ₂ < 1% on dry basis after 3 months of durability testing measured energy efficiency> 78%	3/30/06

Future Plans

- 2005
 - Continue testing sorbent formulations
 - Continue operation of 1kW reactors
 - Construct 50kW reformer
- 2006
 - Complete sorbent development
 - Test 50kW reformer

Publications and Presentations

- Development of a Fuel Processor Using Revolutionary Materials for Single Step Absorption Enhanced Natural Gas Reforming, 2004 National Hydrogen Association, Los Angeles California
- Cost Effective Production of Near-Pure Hydrogen, 2004 Fuel Cells and Hydrogen Futures Conference, Perth, Australia

Safety Question #1. What is the most significant hydrogen hazard associated with this project?

- Deflagration in reactor due to mixing of air and hydrogen when switching from reforming cycle to regeneration cycle.
 - During the reforming cycle the CO₂ sorption material is saturated and must be regenerated. After purging the system with steam, flue gas from a natural gas burner passes through the reactor to heat and regenerate the sorbent.

Safety Question #2. What are you doing to deal with this hazard?

- Air to burner is controlled by two sequential valves controlled by two separate control systems/sensors.
- Hydrogen is purged by multiple volumes of steam before regeneration begins.
- System is above ignition temperature so combustion will begin before hydrogen/air mixture can reach explosive range
- Pressure relief valves sized to release pressure
- Reactor vessel designed to withstand pressure wave
- Laboratory access is limited
- System is operated within hazard containment area
- Test area has multiple sensors with automated electrical and natural gas shut-offs