NUVERA FUEL CELLS

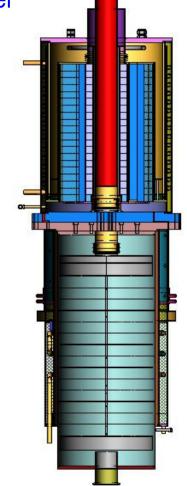
THE FUTURE OF ENERGY"

CHARM

Cost-effective High-efficiency Advanced Reforming Module

2005 DOE Hydrogen Program Review Thomas M. Holmes Nuvera Fuel Cells 26May'05

Project ID # FC45


This presentation does not contain any proprietary or confidential information

Background

Project SOW amended in Jun'04

- Formerly "Innovative Low-cost and High Efficiency Hybrid PEM Fuel Cell Power System for Distributed Generation Market" (DuAlto)
 - 75 kW Hybrid system development:
 - Fully integrated Fuel processor
 - \oplus PEM fuel cell
 - # Turbo-compressor-motor-generator (TCMG)
 - AC Generation Efficiency: > 40%
 - Cost: > \$1,500/kW_e
- Fuel processor:
 - Cost: \$70K
 - Durability: limited by high temperatures
 - Manufacturability: high complexity of thermal expansion joints
 - Repairability: component failure requires replacement of subsystem

Overview

Timeline Project start date: Project end date: Percent complete: Budget Total project funding: DOE share: Contractor share: 	<u>Total</u> Jan'02 Mar'07 75% \$17.02MM \$12.00MM \$ 5.02MM	<u>DuAlto</u> Jan'02 Jun'04 100% \$9.96MM \$7.04MM \$2.92MM	<u>CHARM</u> Jul'04 Mar'07 30% \$7.06MM \$4.96MM \$2.10MM	
 Funding in FY04: Funding for FY05: Funding for FY06: 	¢ 0.021000	\$2.51MM	\$0.49MM \$2.15MM \$1.78MM	

Barriers

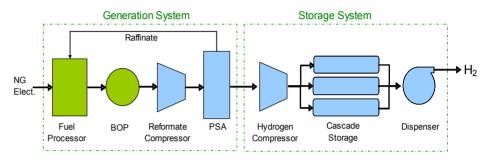
- Fuel Processors: Develop technology for reforming NG or LPG
 - + A: Durability
 - ⊕ B: Cost
 - + F: Fuel Cell Power Integration
 - + I: Hydrogen Purification
 - + J: Startup time/transient Operation

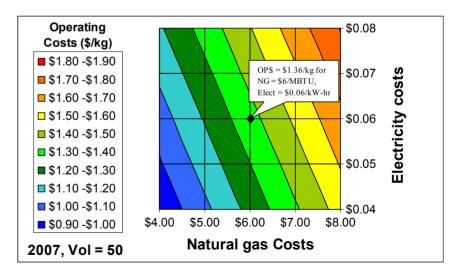
CHARM Objectives

- Develop an advanced reforming module for stationary applications

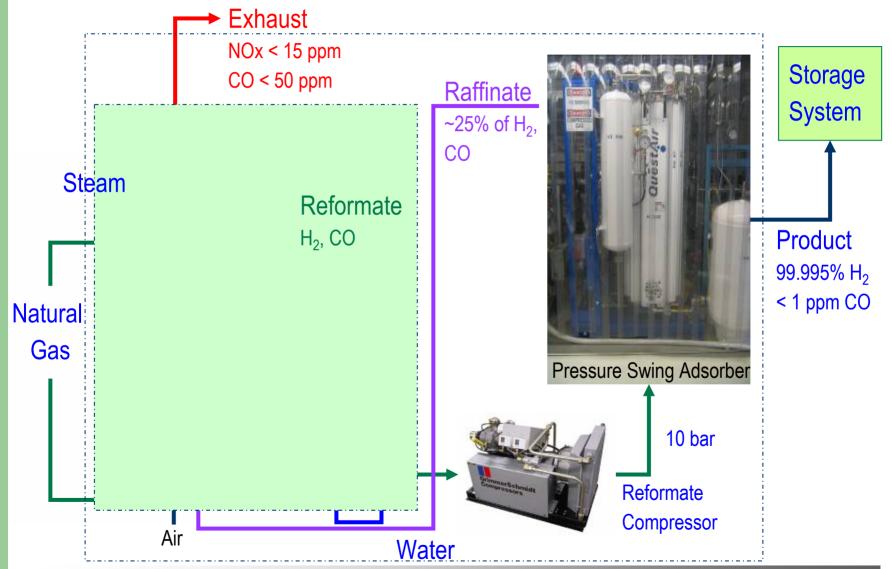
 - Develop a scaleable technology from 500 to 2,000 scfh (1.2 to 4.7 kg/hr)
 - Achieve a cost-effective balance between efficiency and manufacturability
 - Lifetime assessment through accelerated aging
 - 1,000 scfh demonstration at Argonne National Laboratory

GOALS				
Fuels	NG, LPG	To afford flexibility		
Efficiency	>75% (LHV)	Thermal effy: H2+CO out/All fuel in		
Lifetime	40,000 hours	Ultimate goal is 80,000 hours and 4000		
	1000 cycles	cycles		
Cost: 1,000 scfh	\$10,000	100 kWth input; Volume = 50 units		
Cost: 500 scfh	\$6,000	50 kWth input; Volume = 50 units		


- Past year Objectives:
 - System Definition
 - Design & Analysis


Approach

- Task-1: System Definition [Q3'04]
 - System modeling
 - What is the proper balance of fuel processor integration?
 - Define specifications and operating conditions
- Task-2: Design & Analysis [Q3'04-Q1'05]
 - Subscale concept testing, concept selection
 - What are the tradeoffs of capital and manufacturing costs versus efficiency and durability?
- Task-3: Prototyping & Testing [Q1'05-Q1'06]
 - Full-scale performance testing of the fuel processor sub-system
 - Assess temperature profiles, heat flux, reaction equilibrium, burner emissions
 - Design iterations to achieve performance objectives
- Task-4: System Demonstration [Q3'05-Q4'06]
 - System level testing
 - Durability testing
 - System demonstration at Argonne National Laboratory


Task-1. System Definition

- System
 - Hydrogen Generation & Refueling station (2.4 kg/hr)
 - Assess FP performance in a hydrogen generation, storage and refueling application
 - CHARM scope: FP & Balance of Plant (SH, SG's, HTS, HX's)
- System Modeling
 - Hysys process simulation
 - Define sub-system and component specifications
 - Parametric analysis
 - Assess process sensitivity
 - Define component tolerances
 - System Operating cost ~ \$1.36/kg
 Assumes NG @ \$6/MM BTU

Task-1. System Definition

CHARM, 2005 DOE Hydrogen Program Review

Task-1. System Definition

Fuel Processor specifications:

- Hydrogen output: 1,000 scfh (2.35 kg/hr)
- Scaleable from 500 to 2,000 scfh
- Minimize capital cost: < \$10K at QTY = 50
- Low system operating cost: < \$1.41/kg
- Efficiency: > 75% (LHV)
- High durability: 40,000 hours, 1,000 cycles
- Low technical risk: max flame stability, minimize fuel/air manifold complexity
- Burner emissions: NOx < 15 ppm, CO < 50 ppm (3% O₂, 3 hour average)
- ASME code stamping: minimize boundary metal temperatures
- Repairability: life mitigating parts can be replaced at 1/3 the cost of a new FPA
- FID controls: able to use existing Nuvera control module
- Short development time: Prototype available in March'05
- Fuels: Natural gas or LPG

Task-2. Design & Analysis

Fuel Processor Screening

Concept-1

- Based on residential furnace burner design
- Burners tubes in a SR shell

Concept-2

- Similar to Nuvera 5 kW FPA
- SR tubes in a burner shell

✤ Concept-3

- Competitive benchmark
- Fully integrated FPA
- Low & High pressure SR

Specification		Conc	Concept-1		Concept-2		Concept-3	
Description	Importance	Low P	High P	Low P	High P	Low P	High P	
Durability	9	5	3	5	3	5	3	
Operating Cost	9	5	9	5	9	9	5	
Schedule	9	9	9	9	9	3	3	
Tech Risk	9	5	3	5	3	3	3	
FID/Controls	9	5	5	5	5	3	3	
Start Up Time	9	5	5	5	3	3	3	
Emissions	5	5	5	5	5	9	5	
ASME Code Stamping	5	5	5	5	5	5	5	
Repairability	5	5	5	5	5	5	3	
Nuvera USP/ Patent	5	5	5	5	5	0	0	
H2 Output Purity	5	5	5	5	5	5	5	
FP Capital Cost	3	5	3	5	3	5	3	
Turndown	3	5	9	9	9	5	5	
Dimensions	3	5	5	5	5	5	5	
Combined Cycle	3	0	0	3	3	5	5	
Portable Applications	3	5	5	5	3	3	3	
Scalability	3	9	9	5	9	5	5	
Fuel Type	3	5	5	5	5	5	5	
Total score		533	539	542	524	498	408	

- Fully integrated concept: concerns of technical risk, repairability and development time
- High pressure reforming options have lower operating costs
 - \oplus but higher capital costs and concerns over durability and technical risk
- Low pressure concepts 1 & 2 scored similarly
 - ⇒ Proceed with subscale testing to enable data-driven decision

NI IVFRA

Task-2. Design & Analysis

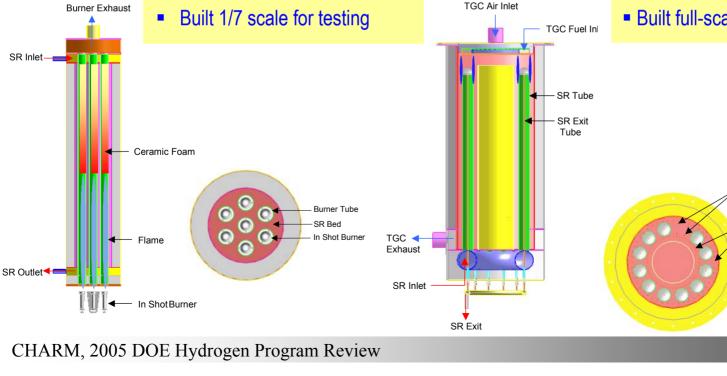
Fuel Processor Concept Evaluation

Concept Screening of Low pressure concepts

"Blue Flame" concept

- Residential burner technology
- 7 burner tubes in an SR shell
- Very long flame length
- FPA is 65" tall

VS.


Avanti "Hubcap" concept

- Nuvera 5 kW FP technology
- 12 SR tubes in a burner shell

TGC Fuel Holes

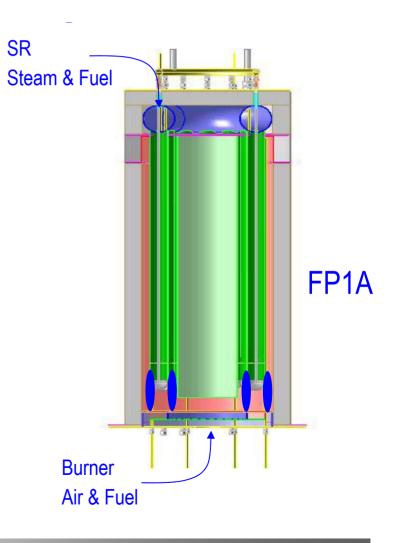
TGC Air Holes

- Short flame length
- FPA is 52" tall
- Built full-scale for testing

FDA Design Options

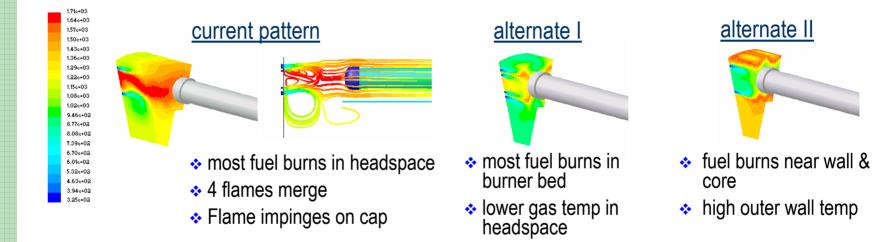
Task-2. Design & Analysis

Fuel Processor Concept Selection


- ✤ Blue-flame FP Testing
 - (+) Operating cost
 - (+) Durability
 - (--) Raffinate and NG flame speeds require different nozzles
- Hubcap FP Testing
 - (+) Reliable ignition & controls
 - (+) Flame stability on a wide range of fuel compositions and flow rates
 - Transition from NG ⇒ Raffinate
 - Accommodate PSA pulsations
 - Suitability for other applications
 - (+) Does not require ASME PV stamp
 - (-) SR manifold complexity
- ⇒Selected Hubcap concept

Specification	Importance	FFA Design Options		
Opeemeation	importance	Blue-flame	Hubcap	
FP Capital Cost	9	5	5	
Operating Cost	9	9	5	
Scaleability	9	5	5	
Reliability	9	5	9	
Durability	9	9	5	
Steam Production	5	5	5	
Development Schedule	5	5	9	
Flame Stability	5	3	9	
Controls	5	5	5	
Emissions	5	5	5	
Turndown	5	5	9	
Startup time	3	5	5	
ASME Certification	3	5	9	
Nuvera USP / Patent	3	5	5	
Build Complexity	3	5	3	
Fuel Type	3	3	5	
Total score		506	552	

Task-3. Prototyping & Testing


Hubcap (FP1) ⇒ FP1A Conversion

- Inverted burner with an "up-fire" configuration
 - Lower pressure drop due to buoyancy
 - Lower heat loss thru the burner end plate
 - Improved NOx emissions by decreasing the residence time at high temperatures
 - More suitable for commercially available induced draft exhaust blower
- Technical challenges
 - Direct flame impingement on the SR caps is responsible for the max wall temperature
 - Performance limited by non-uniform flow of combustion gasses

Task-3. Prototyping & Testing

FP1A Combustion Behavior

FLAME TEMPERATURE

→ CFD modeling

- Enhanced the understanding of air/fuel mixing & combustion in the burner
- Combustion behavior was found to vary significantly depending on air/fuel inlet hole pattern
- A hole pattern with improved combustion behavior was identified

Task-3. Prototyping & Testing

- FP1B Modifications (April-May'05)
 - Reduced SR peak wall temperatures with modified burner hole pattern
 - Quick-change burner endplates to allow testing of alternate designs
 - Adjustable burner headspace distance
 - Simplified SR manifolding
 - Improved burner flow distribution via exhaust port design
 - Improved SR catalyst effectiveness via optimization of inner/outer tube geometry
 - Reduced heat loss via improved internal insulation design
 - Improved SR inlet temperature and burner fuel controls
- Verify FP1B performance against the high level specifications (June'05)

Reviewer's Comments

- Include more data in the presentation
 - Due to the proprietary nature of this development effort, it is often difficult to reveal specific data until after the Intellectual Property is protected

Emphasize the Technology Transfer

- The scope of the CHARM program is to develop a scaleable fuel processor technology with flexibility for a range of fuel types, compositions and flows
- The first commercial application envisioned for this fuel processor is in Nuvera's hydrogen generation, storage and refueling product

✤ Define off-ramps in the program

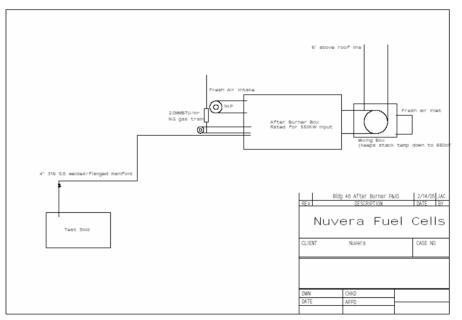
- Nuvera employs a rigorous Stage-gate product development process with Go/No-go decision points
- The Proof of Concept Stage-gate for the CHARM fuel processor and the entire hydrogen generation system will be in Jun'05

Full-scale technology demonstration

Detailed assessment of system capital and operating costs

Future Work

- Task-3. Prototyping & Testing
 - Verify FP1B performance against the high level specifications (June'05)
 - ⊕ Hydrogen generation rate: 1,000 scfh (2.35 kg/hr)
 - ⊕ Hydrogen purity: > 99.995%, CO < 1 ppm</p>
 - ⊕ Burner emissions: NOx < 15 ppm, CO < 50 ppm (3% O2, 3 hr average)</p>
 - + Evaluate performance at steady state, idle, and all transient conditions
 - Complete FP2 design and fabrication (Aug'05)
 - ⊕ Correct any FP1B performance deficiencies in FP2 design
 - ✤ FP2 designed for manufacturability and durability
 - Verify FP2 performance against the detailed specifications (Oct'05)
- Task-4. System Demonstration
 - Incorporation into Nuvera hydrogen generation system (Nov'05)
 - Demonstration at Argonne National Laboratory (Mar'06)
 - Complete Durability trials (Dec'06)



Publications & Presentations

✤ None

Hydrogen Safety

- The most significant hydrogen hazard associated with this project is:
 - The DOE Safety Evaluation team (Oct'04) expressed some concern with the laboratory exhaust system that disposes the CHARM hydrogen product stream to an afterburner.
 - Potential for combustible gases to lie stagnant in the dead-ended manifold exhaust line to the afterburner.
 - If the concentrations approach or exceed the mixture lower flammability limit (LFL), there is an explosion hazard in the line and in all the laboratories it serves.

Hydrogen Safety

- Our approach to deal with this hazard is:
- A detailed Hazop analysis of the exhaust line is being conducted
 Corrective actions will be implemented