

2005

DOE Hydrogen Program Review

150 kW PEM Fuel Cell Power Plant Verification

Tom Clark UTC Fuel Cells May 26, 2005

Project ID # FC46 Contract # DE-FC36-04GO14053

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Jan. 2, 2004 Start Date
- Dec. 31, 2009 End Date
- 20% Complete

Budget

- Total project funding
 - DOE share \$11,617,821
 - Contractor share \$10,165,096.
- Funding FY04 \$1,337,306
- Funding FY05 \$1,562,694

Barriers

- Components
 - O. Stack Material & Manufacturing Cost
 - P. Durability
 - Q. Electrode Performance
 - R. Thermal & Water Management
- Distributed Generation Systems
 - E. Durability
 - F. Heat Utilization
 - G. Power Electronics

Partners

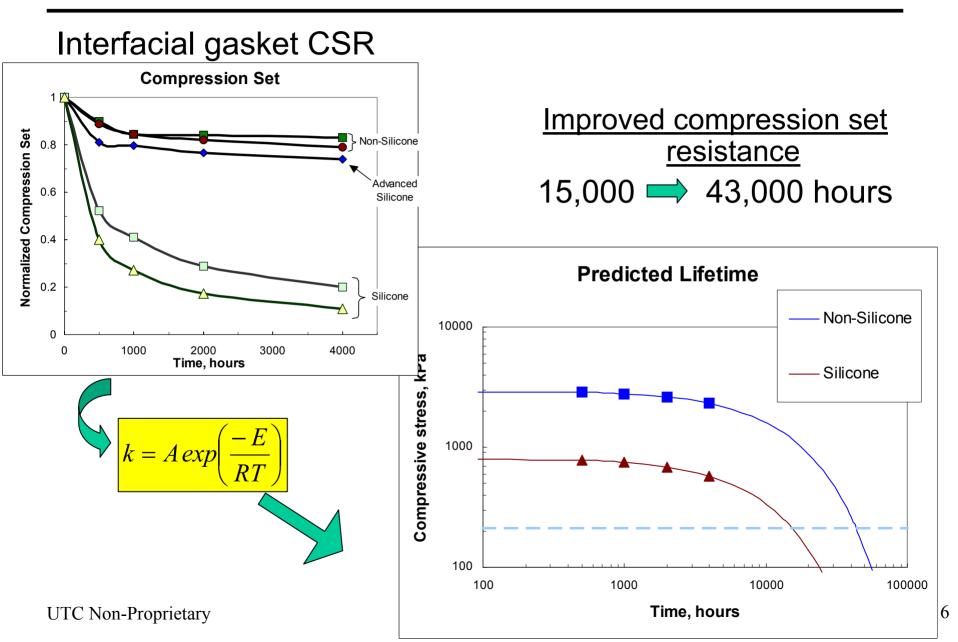
- United Technologies Research Center
- CT Light and Power
- EPRI
- Austin Energy
- New York Power Authority
- San Francisco Public Utilities
 Commission

Objectives

- The UTC Fuel Cells DOE Stationary Power Plant Program will resolve critical cell component, cell stack, and power plant reliability issues. Testing will be conducted in 20-cell stacks, and 150 kW power plants.
 - 1. Improve PEM CSA durability to achieve lifetimes >40,000 Hrs
 - 2. Verify reliability of low cost PEM cell stack components
 - 3. Verify the Design, Durability, and Reliability of Natural Gas Fueled PEM Power Plant
 - 4. Complete a Fuel Cell Stationary Power Plant Market Assessment
 - 5. Waste Heat Thermal Integration Assessment

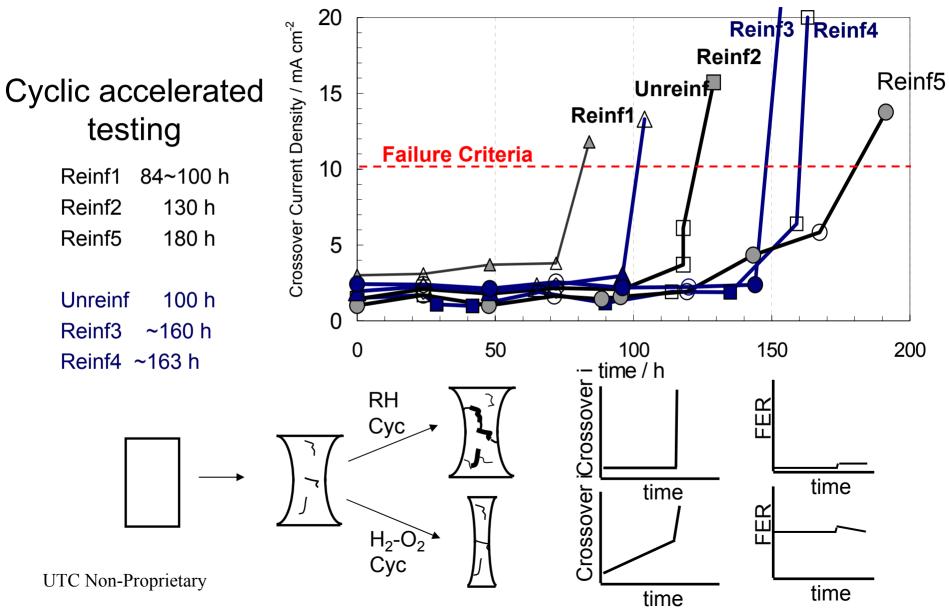
CSA Technology Approach

- Improve PEM CSA durability to achieve lifetimes > 40,000 hrs by:
 - Determine root cause and corrective action for high severity / frequent CSA failure modes
 - Develop a mathematical modeling to optimize inlet flow channel design for maximum humidification
 - Identify seal materials with chemical and mechanical stability in a fuel cell environment
 - Verify accelerated test conditions that demonstrate representative failure modes
 - Endurance verification of durability improvements
- Cost reduction of PEM CSA components by validating low-cost plate and UEA components
 - Performance in single cell tests and
 - Durability in 20-cell tests

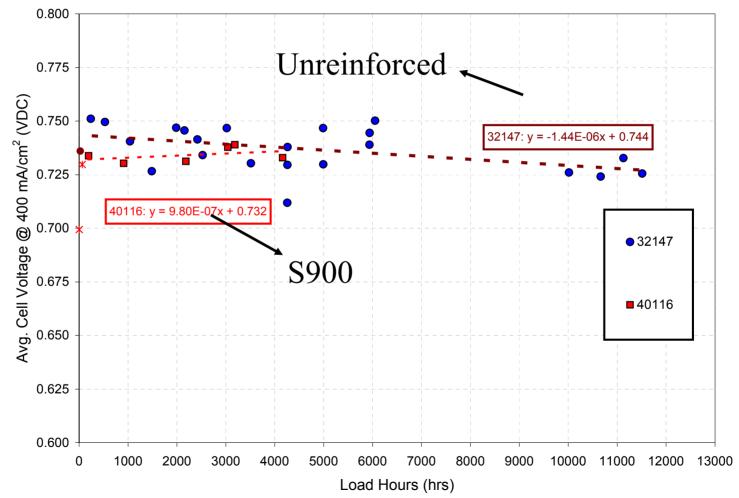


CSA Technical Accomplishments

- Improved components and accelerated testing for CSA durability
 - Accelerated testing shows advanced reinforced membrane lifetimes of > 20-kh
 - Non-silicone materials for advanced designs down-selected
 - Seal accelerated testing suggests sealability maintained up to 40,000 Hrs
- Low cost component verification
 - Single cell performance verification of low cost plates and UEAs
- Endurance Testing
 - 11,500 hours on 20-cell stack with unreinforced membrane
 - 4,000+ hours on S900 20-cell stack

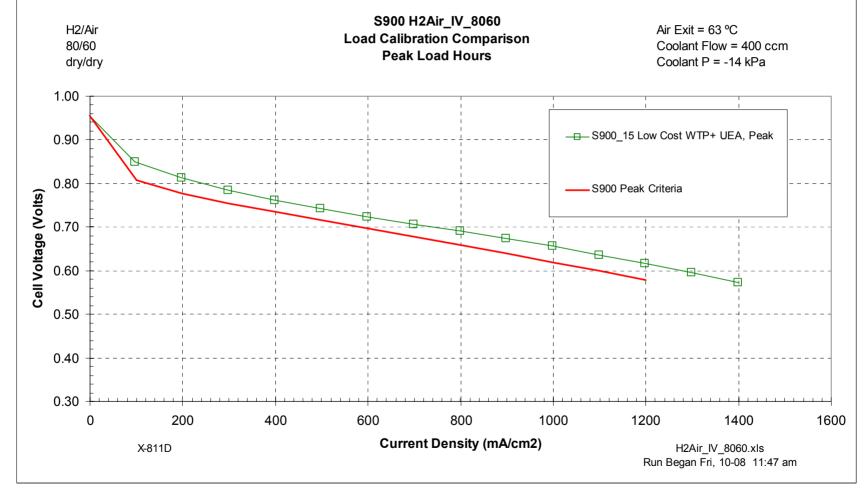


Seal Durability Accomplishment


Membrane Durability Accomplishment

Endurance Demonstration Accomplishment

4.5-kh on S900 20-cell and 11.5-kh on N111 20-cell


UTC Non-Proprietary

CSA Cost Reduction

Accomplishment

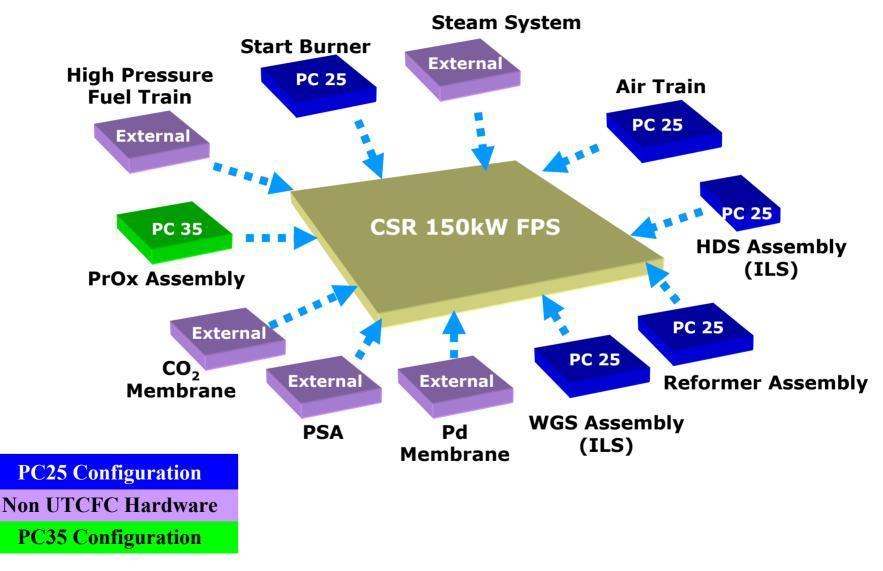
Performance comparison

UTC Non-Proprietary

UTCFC Non-proprietary

- Verify the specification, durability, and reliability of natural gas fueled PEM power plant
 - Operate PEM Beta Stationary power plant as a 150 kW baseline
 - Dynamic Controls Testing
 - Use Beta Test Article Results as a Baseline for Next Generation
 Verification Design
 - Compete Improved Integrated System Design for Reliability
 - Construct and Evaluate a PEM-150kW that incorporates significant Improvements in Power Plant Controls, Fuel Processor Design, Balance of Plant Components, and Grid Operation
- Complete a Fuel Cell Stationary Power Plant Market Assessment
 - Identify Market Segments, Drivers and Size
 - Identify Energy Credits and Incentives
 - Explore Domestic and International Opportunities
- Waste Heat Thermal Integration Assessment
 - Concepts,
 - Value Proposition Studies
 - Regional Needs Summary

P/P Accomplishments

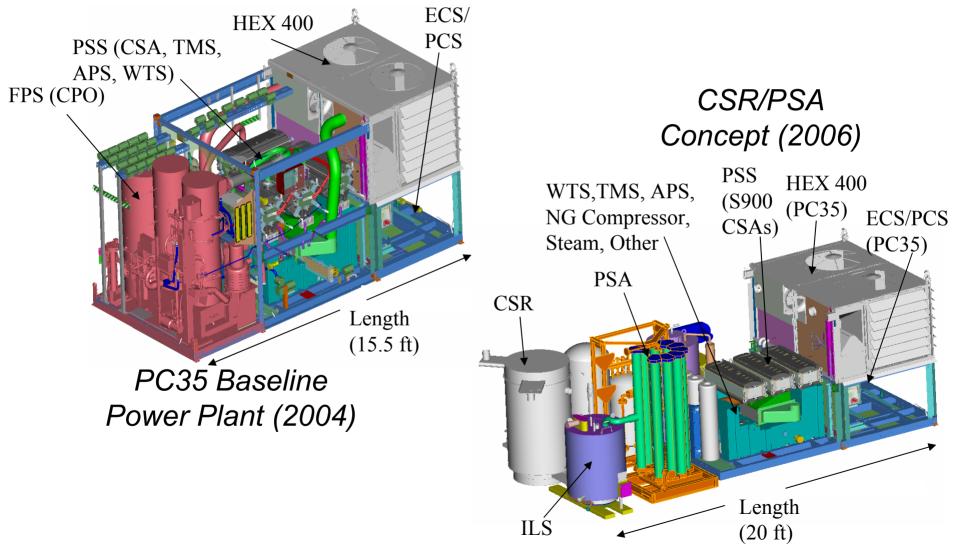

- Demonstration Testing of Beta Power Plant
 - Multiple daily runs: Typical 1 to 4 hour runs
 - Controls tuned for hands off automatic startup
 - Achieved maximum power of 139 kW DC / 117kW AC Net.
 - CO performance from FPS less than 10 ppm
 - FPS thermal management optimized
 - Debugged subsystems and BOP (balance of plant) components
 - P/P Start time reduced to 25 minutes
 - Cathode Humidification/Energy Recovery Device Verified
- Dynamic Tests Completed & Data Collected.
 - Tests conducted on 8 major loops: Power, Cathode air, CPO fuel & air flows, Prox air & thermal, Vaporizer water, CPO air blower
 - Tests conducted at 2 power levels: 40 kW and 75 kW.
 - Excitations used are step, sine-sweep and PRBS (pseudo random binary signal)
 - Dynamic data acquired at 10 Hz from the controller via CANalyzer

- Design and test a Fuel Processor System (FPS) capable of delivering high purity H₂ (> 90%) to a PEM fuel cell
- Design FPS to resolve critical component durability and cost issues using UTCFC experience
- Design validation will be accomplished via a full scale (150 kW) integrated FPS test

FPS Design Approach

FPS Accomplishments

- 4 FPS design concepts were evaluated
- Reformer design based on Catalytic Steam Reforming (CSR)
- Examined the impact of reformate clean-up
 - 1. CO₂ Membrane (CO₂ Separation)
 - 2. Pd Alloy Membrane (H₂ Separation)
 - 3. Pressure Swing Adsorption (PSA)
 - 4. Preferential Oxidation (PROX)



FPS Concept Options

	Concept 1	Concept 2	Concept 3	Concept 4	
FPS	Reformer Type - CSR				
Operating Pressure	4 bar	6 bar	10 bar	1 bar	
CH ₄ Conversion	90%	85%	85% 75% 90%		
Purification					
Method	CO ₂ Membrane	H ₂ Membrane	PSA	NONE - PROX	
H ₂ purity	97% dry	>99%	>99.9%	78% dry	
CSA	CSA Type – S900				
Anode Recycle	No	Yes	Yes	No	
Power Plant					
FPS Efficiency	73.9%	62.2%	73.9%	73.8%	
Mech. Efficiency	97.0%	95.5%	94.9%	98.7%	
CSA Efficiency	52%	52%	52%	51%	
System Efficiency	37.2%	30.8%	36.4%	37.0%	
Technical Risk	Membrane	Membrane	Reformer	CSA - Reformate	

150 kW Conceptual Layout

UTCFC Non-proprietary

Accomplishments

Fuel Cell Stationary Power Plant Market Assessment Market Segments/ Drivers

		Segments / Applications					
	Commercial	Utility	Industrial	Government			
Market Drivers	Combined Heat & Assur Power Powe (CHP)		ConventionalSpecialty (H2)	 US Military bases Municipal buildings 	Municipal ADGLandfills		
Economic	 ~ 3 year payback Energy Savings Lost produ Lost produ y cost (varie) 	s Up to 10 year payback	 ~3 - 5 year payback Low Electric Rates 	Longer paybacks possible	Longer paybacks possible		
Technical	 Emissions / Noise Heat Quality Footprint 	 ility Large power requirements (1+MW) High power density Low Emissions 	Multi MW needs	 Not always 24/7/365 Emissions/ Noise Heat Quality Footprint 	Require Gas Processing Unit		
Regulatory / Other Factors	 Availability of Incentives /Subsidies Utility Interconne ction rules/tariff s 	 State PUCs RPS Standards Costs captured in regulated base Grid Constraints 					

<u>Accomplishments</u>

Fuel Cell Stationary Power Plant Market Assessment

- Domestic US Market
 - Direct Generation
 - Renewables (ADG)
 - On-Line Emergency Power
 - Assured Power
 - Micro-grid Power
 - Green Power / Cogeneration
- International Market Opportunities
 - Germany
 - Nuclear Power Phase out
 - Reduce CO2 Emissions Reduction levels by 25%
 - German Energy Agency Promoting (DENA) Renewable Fuels
 - CHP Incentives for Operators
 - Korea
 - Government Focus on Fuel Cells
 - Government Looking to Move to H2 Economy
 - China
 - Pollution-7 of 10 most polluted cities are in China
 - 10% of World Energy Consumption
 - UTCFC Non-proprietary

Accomplishments

Fuel Cell Power Plant Market Assessment

Identified Energy Credits and Incentives

СА	SGIP – Level 1 Renewable	\$4.50 / W	\$000 000
CA			\$900,000
	SGIP - Non-Renewable	\$2.50 / W	\$500,000
CA	LADWP – Renewable Fuel	\$2.20 – 2.40 / W	\$440,000 - \$480,000
	LADWP – Non Renewable	\$1.20 – 1.90 / W	\$240,000 – 380,000
СТ	CT Project 100	10 Year contract for 5.5 cents/kwhr + wholesale pricing	Must be 1MW project
DE	Green Energy Program Grant - Renewables	Lesser of 50% cost or \$250,000	
NJ	Clean Energy Program - Renewables	\$360,000 - \$855,000	Formula dependent on product size (100 kW – 1 MW)
NJ	Renewable Energy Advanced Power Program	20% of total construction cost	Minimum of 1MW in size. Undergoing revisions, new solicitation in summer 2005
MD	Corporate Tax Credit – Both Renewable and non- Renewable	30% of installed cost, max of \$1.00 / W	\$200,000 – credit carry forward for 10 years
MA	Commercial, Industrial & Institutional Initiative (C31)	\$3.00 - \$4.50 / W	\$650,000 or 50% of construction cost.
OR	Business Energy Tax Credit	35% tax credit taken over 5 years	\$350,000

19

Accomplishments

Power Plant Thermal Integration Study

Reviewed several thermal integration concepts, markets, regional aspects and evaluation methodologies to select **4 primary concepts**, **5 markets and 8 regions for systematic evaluation** and identification of high value concepts

- CHP Markets Identified:
 - Hospitals Chilling needs throughout the year and clean environment requirement
 - Supermarkets Dehumidification needs
 - Data Centers Requirements for reliable power and chilling needs
 - Hotels Swimming pools would need dehumidification
 - Labs/Clean rooms Reliable power and 24 hour conditioned air
- Regions Selected:
 - San Francisco, Los Angeles, Chicago, Boston, New York City, Long Island, Miami Washington D.C.
 - Density of Potential Customers
 - Spark Spread (Delta between Natural gas and Electrical costs)
 - Geographic Zones, Hot and Humid Areas
 - Areas with \$ Incentives for CHP Applications

Project Future Work

- FY 2005
 - Continue to develop and demonstrate low cost, cell stack components with high durability and reliability
 - Design and manufacture of advanced seals
 - Performance verification of low cost plates and UEAs
 - Complete improved PEM stationary natural gas fueled power plant design based on Lessons Learned
 - Proceed with PSA system (Concept #3) as primary option unless further data from Concepts #1 and #4 suggest otherwise
 - Monitor technological progress as it relates to Concepts #1 and #4
 - Transition Concept #3 to the preliminary design phase
 - PSA purification technology
 - Complete Reformer development tasks
 - Noble metal catalysts
 - Modified tube structure
 - Finalize Thermal Integration study for the useful application of PEM power plant heat

- FY 2006 2009
 - Validate PEM stack components and power plant design concepts in Field Evaluation Power Plant on Grid
 - Begin quantified accelerated testing of advanced membranes to show 40,000 hr durability
 - Continue 20-cell stack demonstration of long life stacks (15,000 Hrs).
 - Stack testing under accelerated, aggressive conditions for lifetime estimation and robustness.
 - Validate PEM power plant performance on feeder systems located in three areas of the U.S: Austin, TX; Albany, NY; and San Francisco CA.
 - Develop predictive base for PEM power plants on various distribution feeders

Backup Slides

The most significant hydrogen hazard associated with this project is:

Hydrogen leakage within the power plant fuel compartment leads to explosion.

- 1. Requires multiple failures
- 2. Multiple layers of protection
- 3. Very low probability of occurrence

Hydrogen Safety

Our approach to deal with this hazard is based on CSA FC1, NFPA 496, and NEC:

- 1. Design equipment for pressure capability and leakage.
- 2. Actively monitor hydrogen flow to limit fuel leakage.
- 3. Ventilate the compartment to less than 25% LFL.
- 4. Monitor ventilation flow.
- 5. If necessary,

Monitor ventilation exhaust for combustibles

Fuel Compartment Fire Detection

Provide fail-safe isolation of hydrogen via multiple shutoffs and Normally-closed valves

- Safety reviews of product design and product operation
 Codes and Standards, Hazard Analysis, FMEA, HazOps
- Layers of Protection Approach

Passive, Active, Reactive Mitigations Ventilation, Monitoring of Fuel Enclosure, Fuel Interlocks, Selection of electrical components in Zone 2 areas

Engineering change process applied

Cross functional team members review and approve Functional verification of hardware/software changes

Operating procedures under revision control

Readiness reviews required for major changes, new equipment and chemicals. Highlights:

- » Hazards analysis and FMEA
- » Equipment functional checkout
- » Identification of preventative maintenance
- » Procedures and Energy Control
- » PPE assessment, training and communication