

Improved Fuel Cell Cathode Catalysts Using Combinatorial Methods

Junhua Jiang NuVant Systems Inc. May 23-26, 2005

Project ID # FCP10

This presentation does not contain any proprietary or confidential information

Overview

Timeline

Start date: 7/21/2004

End date:7/13/2006

Percent complete 38%

Budget

- Total project funding
 - DOE share:\$650,000
 - Contractor share:\$70,558
- Funding received in

FY04:\$216,666

FY05: \$73,763

Barriers

- Barriers addressed
 - Catalyst Cost
 - Electrode performance

Partners

- T. E. Mallouk, Penn State
- E. S. Smotkin, UPR

Objectives

Project objectives

Assist DOE in the discovery of a PEMFC cathode catalyst with an order-of magnitude improvement over state-of-art catalysts to decrease the cathode cost and improve cathode performance.

- To establish high throughput discovery methodology
 - To address issues concerning materials and operations
 - Upgrade electronics and software for the high throughput systems
 - Upgrade array fuel cell flow field design
 - To perform the control experiment on the array fuel cell
- Optimize operating conditions for the high throughput synthesis of catalysts on a synthesis/analysis working station
- To set metrics and baseline data for the array fuel cells by ranking five commercial catalysts
- To optimize synthetic route for the size-controlled synthesis

Approach

- Development of revolutionary cathode catalysts for the PEMFC through an integrated discovery program
 - Efficient factorial search strategies
 - High throughput synthesis using customized process control robotics
 - High throughput focus screening
 - Development of synthetic routes
- Demonstration of revolutionary catalysts in a single cell
- Development of heuristic rules for catalyst discovery

High throughput synthesis work station

A. Array vacuum filtration device; B. Metal ion solution array; C. Reducing agents array; D. 12 Vessel reaction array with controlled T, headspace and stirring; E. Acid and Base solutions for pH adjustment; F. Inert atmosphere chamber for sensitive reagents

NUV100P high throughput screening system

Components:

- (1) 25-channel potentiostat
- (2) Array MEA
- (3) Serpentine flow field
- (4) Counter electrode flow field

Progress: (1) Increased allowable operating T of flow fields from 50°C to 80°C; (2) Increased catalyst spot channel current from 200 mA to 480 mA; (3) Software upgrades.

Conditions for control experiments

Loadings:

Sample 1: 2.02 mg cm⁻², JM 20 wt%Pt/C

Sample 2: 2.01 mg cm⁻², JM 20 wt%Pt/C

Sample 3: 2.05 mg cm⁻², JM 20 wt%Pt/C

Sample 4: 2.02 mg cm⁻², JM 20 wt%Pt/C

Sample 5: 2.03 mg cm⁻², JM 20 wt%Pt/C

Counter electrode: 2 mg cm⁻² JM 20

wt%Pt/C

Operating conditions:

Cell temperature: 60 °C

Oxygen/air side: 1000 SCCM O₂/air with

sparger 60 °C and tube 60 °C

Hydrogen side: 200 SCCM with sparger 65

°C and tube 65 °C

Measurement

Scanning potential from 1.0 to 0.60 V at 10 mV s⁻¹

Sample maps (Latin square sample design)

Column 1 Column 2 Column 3 Column 4 Column 5

Data for H₂-Air control experiment

(a) Polarization curves obtained at 25 spots with identical catalyst

(b) Mean value curves for sample 1-5

- Good uniformity is obtained at 25 spots in the control experiments.
- The mean value curves for five samples are very close.
- Difference of 10 % in the activity can be distinguished at 0.80 V where the reaction is in kinetic control.

Screening of five different catalysts (A-E) at 60°C with air

(a) Full polarization curves at 25 spots

(b) Mean value curves for sample A-E

- Five samples are arranged in a 5x5 Latin square
- Good uniformity is obtained for each sample
- The ranking at 0.80 V for five samples is: C>D>B>A>E

One example of polarization curves for individual sample at 60 °C and with air

 For the same sample, the polarization curves at different spots are very close.

Screening of 5 catalysts (A-E) at 60°C with O₂

(a) Full polarization curves at 25 spots

Ranking at 0.80 V: C>D>B>A>E

(b) Mean value curves for sample A-E

Potential / V (vs Hydrogen electrode)

Screening 5 catalysts (A-E) at 80 °C with air

(a) Full polarization curves at 25 spots

(b) Mean value curves for sample A-E

Ranking at 0.80 V: C>D>B>A>E

Screening % catalysts (A-E) at 80 °C with O₂

(a) Full polarization curves at 25 spots

Potential / V (vs. Hydrogen electrode)

(b) Mean value curves for sample A-E

Ranking at 0.80 V: C>D>B>A>E

Conclusions

- The NUV100P system, a 25-channel potentiostat and a serpentine flow field, has been validated for high precision screening of cathode catalysts.
- Catalysts can be screened at temperatures ranging from room temperature to 80°C, in air or oxygen.

Conclusions (contd..)

- Five different cathode catalysts were ranked using NuVant's NUV100P system composed of a 25-channel potentiostat and a serpentine flow field
- The rankings for the five catalysts at 0.80 V follow C>D>B>A>E, and remain the same at 60°C and 80°C, independent upon the air or oxygen.
- These rankings show high precision and validate the screening system.

Future Work

Remainder of FY 2004

- High throughput synthesis and activation of the catalysts on the robot-controlled work station
- High throughput screening of the samples above
- Optimization of the conditions for the synthesis multicomponent catalysts

FY 2005

- Continuous combinatorial screening of catalysts
- Size-controlled synthesis of five promising candidates
- Demonstration of the five candidates with optimized size in a single cell
- Develop and utilize heuristic rules for the development of next generation PEMFC cathode catalysts

Publications and Presentations

E. S. Smotkin, J. Jiang, A. Nayar, S. Chung, R. Liu, High-throughput screening of fuel cell electrocatalysts, Applied Surface Science, submitted 2005.

Hydrogen Safety

The most significant hydrogen hazard associated with this project is:

Possible fire hazard with fuel side.

Hydrogen Safety

Our approach to deal with this hazard is:

We place hydrogen cylinder and oxygen cylinders 10 ft apart and have flash arrestors at the inlets of the fuel cell. Outlet gases are vented to a fume hood that vents to the outside of the lab.