Fuel Processors for PEM Fuel Cells

D. Assanis, W. Dahm, E. Gulari, H. Im, J. Ni,
K. Powell, P. Savage, J. Schwank,
L. Thompson, M. Wooldridge, and R. Yang

University of Michigan College of Engineering May 24, 2005

Overview

Timeline

- Start: November, 2001
- End: December, 2005
- Percent Complete: 75%

Budget

- Total: \$4,135,547
 - DOE: \$3,250,924 (78.6%)
 - UM: \$884,623 (21.4%)
- FY 04 Funding: \$546,300
- FY05 Funding: \$54,291

Partners

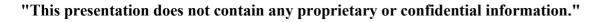
- Süd Chemie
- Osram Sylvania

Barriers

- I. Fuel Processor Startup/Transient Operation
- J. Durability
- K. Emissions and Environmental Issues
- L. Hydrogen Purification/CO Cleanup
- M. Fuel Processor System Integration and Efficiency
- N. Cost

Michigan**Engineering**

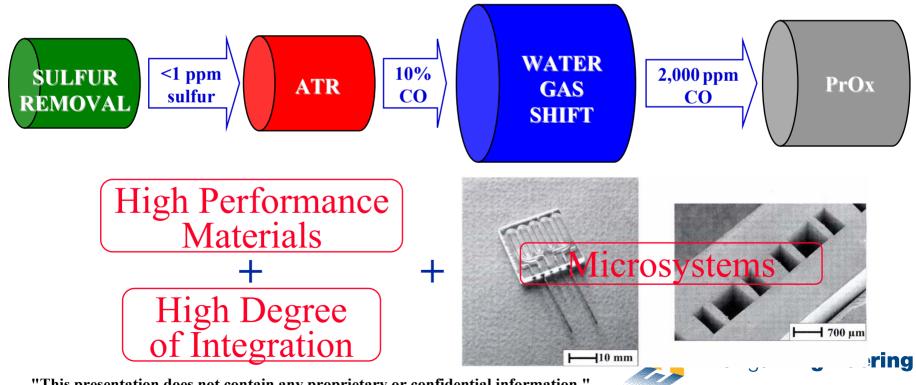
Fuel Processor (Fuel Cell) Technical Targets


Characteristics	Units	Current Status	Target for Year:		
		(2003)	2005	2010	
Energy efficiency	%	78	78	80	
Power density	W/L	700	700	800	
Specific power	W/kg	600	700	800	
Cost	\$/kWe	65	25	10	
Cold startup time to max power (a) -20 °C ambient temperature (a) +20 °C ambient temperature	min min	TBD <10	2.0 <1	1.0 <0.5	
Transient response (10% to 90% power)	sec	15	5	1	
Emissions		<tier 2<br="">Bin 5</tier>	<tier 2<br="">Bin 5</tier>	<tier 2<br="">Bin 5</tier>	
Durability	hours	2000	4000	5000	
Survivability	°C	TBD	-30	-40	
CO content in product stream Steady state Transient	ppm ppm	10 100	10 100	10 100	
H ₂ S content in product stream	ppb	<200	<50	<10	
NH ₃ content in product stream	ppm	<10	<0.5	<0.1	
	•		Michig	gan Engineering	

Objectives

To demonstrate materials and reactors that enable low cost, high efficiency fuel processors.

- Develop high performance, low-cost materials
 - High capacity sulfur adsorbents for liquid fuels
 - High activity and durable catalysts
- Design and demonstrate microreactors employing high performance catalysts
- Design and demonstrate microvaporizer/combustor
- Design and demonstrate thermally integrated microsystem-based fuel processors
- Evaluate system cost

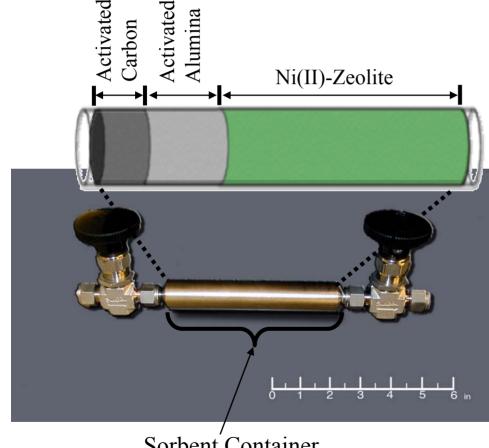


Approach

Using a *microsystems* approach this project will produce highly *integrated*, gasoline fuel processors that incorporate low-cost, *high performance materials*.

If We Are Successful: 10 kW Fuel Processor

Component Weights (kg)	Current		1	Comment	
		Goal	Prototype		
Fuel pump	0.45	50%	0.23	capillary action in microcombustor	
Desulfurizer	2.42	35%	1.57	higher capacity liquid sorbents	
Water tank	3.63	50%	1.81	better integration	
Water pump	0.91	50%	0.45	capillary action in microcombustor	
Fuel/water preheater	2.56	90%	0.26	microcombustor/microvaporizer	
Reformer heat	4.40	90%	0.44	better thermal integration	
Reformer	2.90	67%	0.96	better catalysts/microreactors	
Shift reactors	11.88	67%	3.96	better catalysts/microreactors	
Intercooler	2.27	90%	0.23	better thermal integration	
Air compressor	0.60	0%	0.60		
Preferential oxidizer	3.30	67%	1.10	better catalysts/microreactors	
Fuel cell air cooler	2.27	90%	0.23	better thermal integration	
Fuel cell exhaust drier	0.23	50%	0.11		
Burner	3.40	50%	1.70	microcombustor/microvaporizer	
Thermal insulation	0.91	50%	0.45	better thermal integration	
Valves	0.28	0%	0.28		
Starter Battery	0.22	0%	0.22		
Instrumentation/controls	2.27	50%	1.13	novel strategies/sensors	
Sub-total	44.9		15.74		
Component integration		10%	-1.57		
Total	44.9		14.17	Specific energy of 704 W/kg	

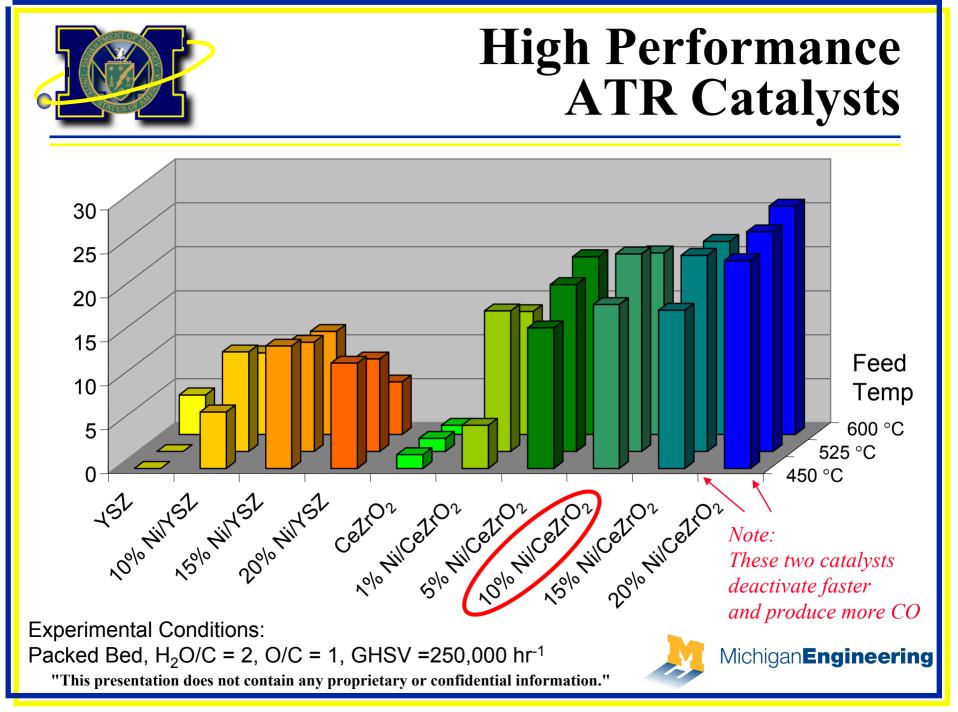

Technical Accomplishments

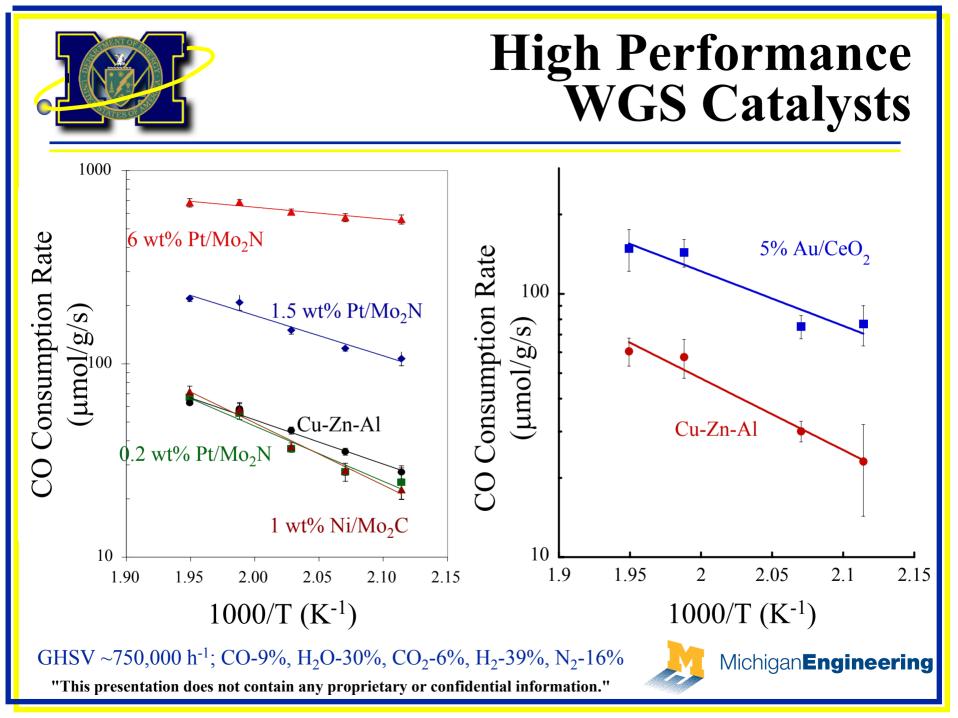
- Optimized high capacity, sulfur sorbents and developed regeneration protocols
- Enhanced activity and deactivation resistance of ATR catalysts
- Enhanced activity of WGS catalysts by an order of magnitude
- Enhanced selectivity and activity of PrOx catalyst
- Demonstrated high efficiency microcombustor/vaporizer subsystem
- Demonstrated breadboard fuel processor system incorporating foam-supported catalysts

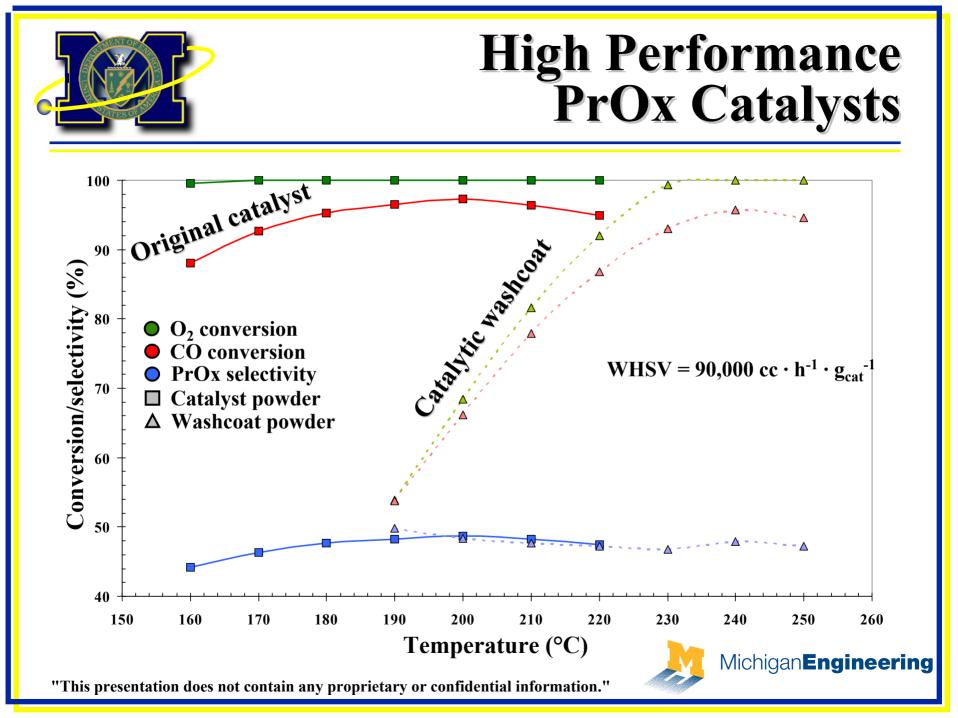
Michigan **Engineering**

Sulfur Adsorber Prototype

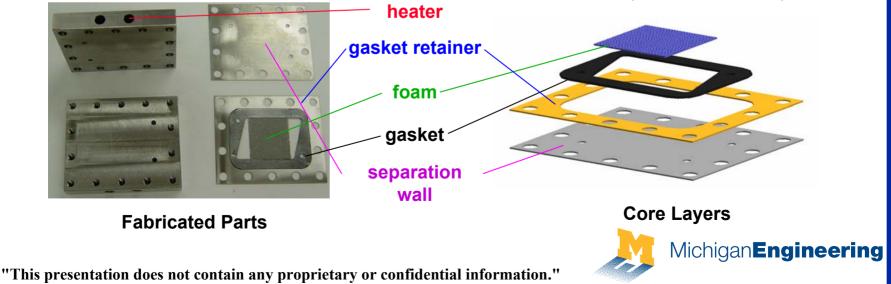
Sorbent Container

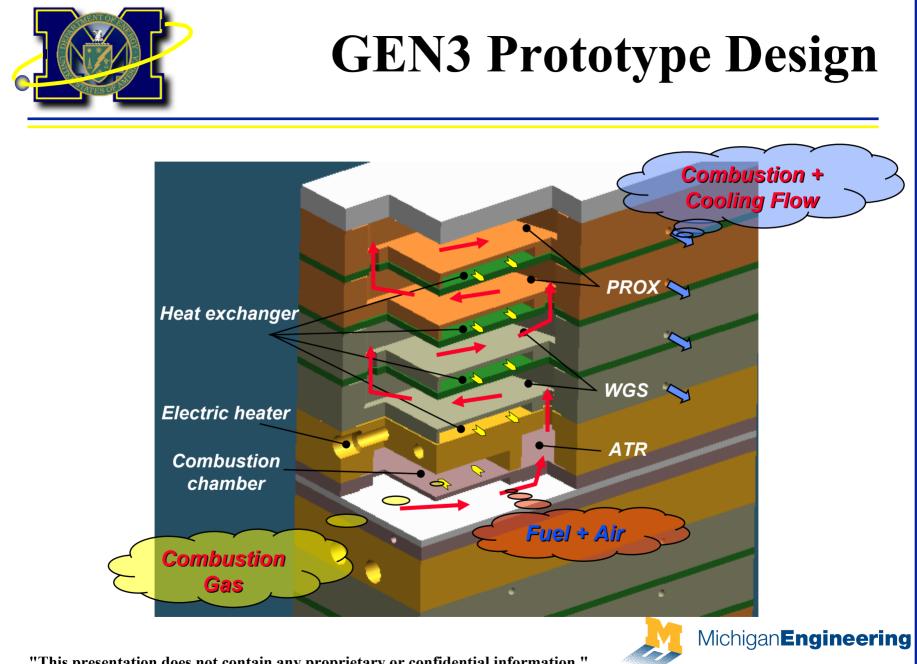

Yang et al., U.S. and foreign patents applied.


"This presentation does not contain any proprietary or confidential information."

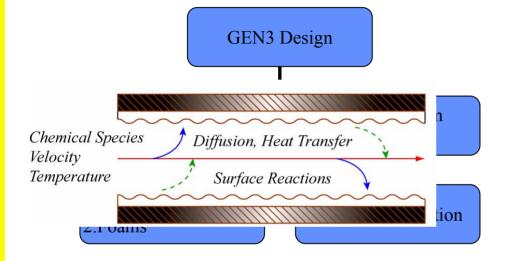

• Three Sorbent Layers

- Activated Carbon (12.4 wt%)
- Activated Alumina (23 wt%)
- Ni(II)-Y (64.6 wt%)
- Gasoline Rate: 50 mL/hr
- Equivalent H₂ Output: $2.8 \text{ moles/hr} (100 \text{ W}_{e})$
- **Effluent Concentration:** ~ 0.3 ppmw sulfur
- Operation Cycle: 9-10 hrs

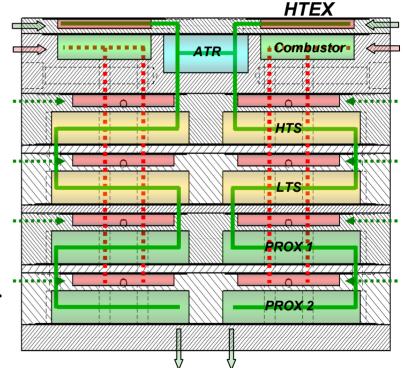



GEN2 Prototype Design

- *Modular* design enabled rapid integration of components
- Enhanced manufacturability achieved through *layer-based* design
- *Flexible* design for component and integrated system analysis

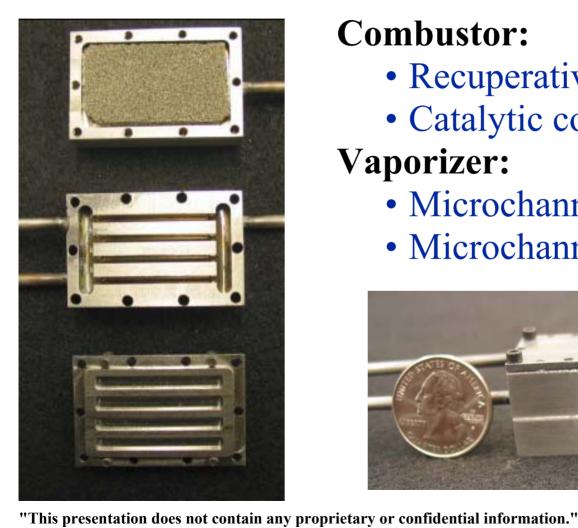


Assembled Module (25 stacks) (77 X 64 X 54 mm)



GEN3 Prototype Reactor Modeling

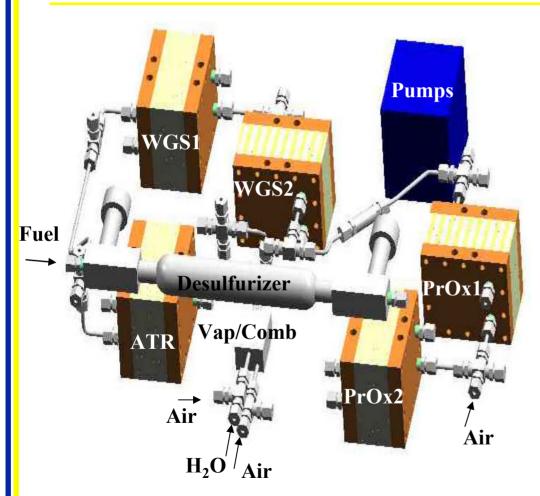
- High fidelity reactor model
- Incorporates heat and mass transfer effects
- Incorporates reaction rate expressions to predict temperature and concentration profiles


"This presentation does not contain any proprietary or confidential information."

Combustor/Vaporizer Prototype

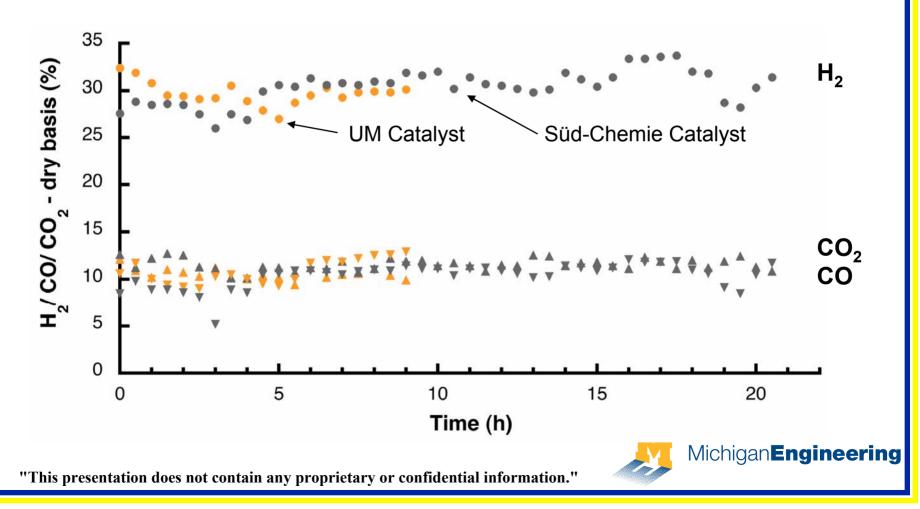
Combustor:

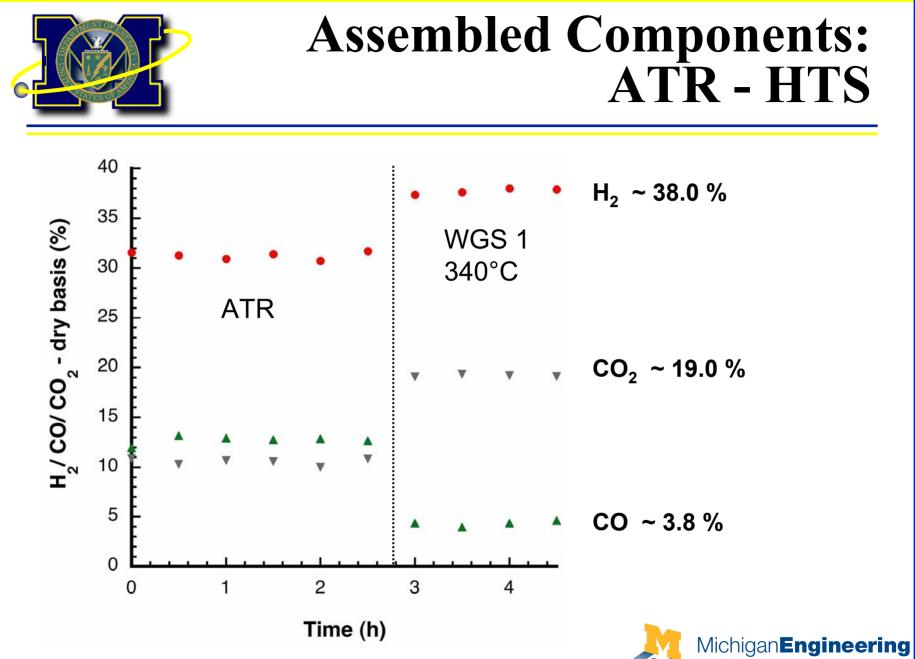
- Recuperative combustor
- Catalytic combustor


Vaporizer:

- Microchannel heat exchanger
- Microchannel flash vaporizer

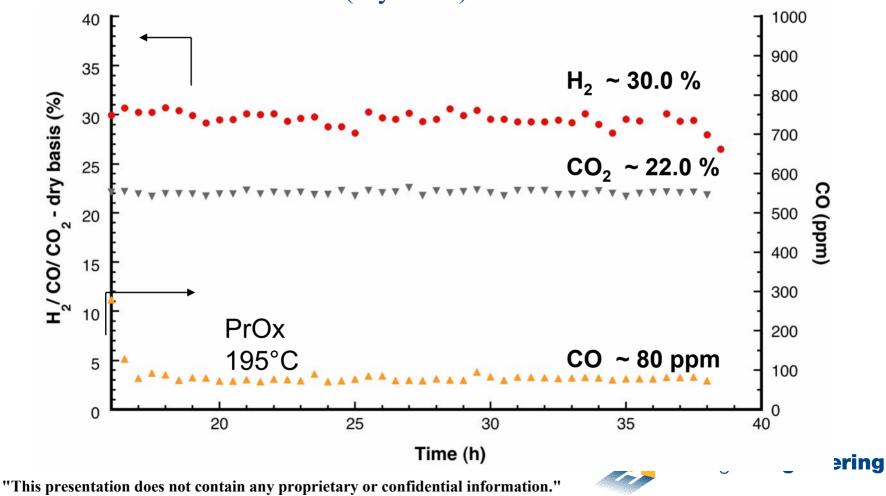
System Development Approach Assembled Components





Assembled Components: ATR

Total Flowrate: ~ 2.0 *l/min* (dry basis)



Assembled Components: ATR - WGS - PrOx

Total Flowrate: $\sim 2.0 \ l/min$ (dry basis)

Performance Summary

	ATR		WGS-1		WGS-2		PrOx	
	6 hr	40hr	6hr	40hr	6hr	40hr	6hr	40hr
H_2	30%	22%	38%	30%	40%	32%	38%	30%
CO	12%	12%	4%	4%	1%	1%	80 ppm	80 ppm
CO ₂	11%	11%	19%	19%	22%	22%	22%	22%

- Total Flowrate: ~ 2.0 *l/min* \longrightarrow 0.76 *l/min* H₂ (0.6 *l/min*)
- 0.01 //sec of H₂ ≈ 142W (107 W)
- H₂ Efficiency ($\eta_{thermal}$): 0.4 *ml/min* of C₈H₁₈ = 209 W $\Delta H_{out} / \Delta H_{in} = 142$ W/ 209 W = 0.68 (0.51)

Responses to Previous Year Reviewers' Comments

- \checkmark The objective of a low cost system is not yet met.
 - Cost projections are part of future work.
- Sound approach, but still need to address and demonstrate viable durability and weight, i.e. gravimetric power density.
 - Difficult to accomplish given funding modifications.
- ✓ Lacks systems integration. Could partner with a systems integrator.
 - Initiated integration; not able to engage integration partner due to cost.
- ✓ The lack of evidence that coking occurs in the ATR needs to verified under repeated start up and shut down cycles.
- ✓ If durability is not going to be directly addressed, then ensure projections are based on credible data, i.e. performance loss rate and material degradation measurements and mechanisms.

A

Responses to Previous Year Reviewers' Comments

✓ The catalysts coating on the microchannels may negate the effects of rapid heat transfer.

- Metal foam supports provide for high catalyst loading and heat transfer.
- \checkmark Unclear how this system will design.
- Start up time and energy are not sufficiently addressed.
 - These are beyond the scope of the program.
- ✓ Focus on new materials and materials development.
- ✓ One reviewer suggests that you can't remove thiophenes with an absorbent, so, sulfur may still be there.
 - Detection limit for our analyzer is 0.02 ppmw S; have also published calibration and analysis.
- ✓ Needs better diagnostics and verification of data through models.
 - Additional diagnostics and modelling.

"This presentation does not contain any proprietary or confidential information."

Future Work

- Remainder of FY05
 - Increase module power densities
 - Increase catalyst loading and utilization
 - Decrease parasitic weight (reactor and foam)
 - Evaluate performance of 200-500 W breadboard systems
 - Evaluate cost and final size
 - Estimate start-up time
 - Demonstrate integrated module
- FY 06
 - Assemble and evaluate 1 kW system

Michigan **Engineering**

Publications and Presentations

Publications:

- S. Srinivas, A. Dhingra, H. Im and Erdogan Gulari, "A Scalable Silicon Microreactor for Preferential CO Oxidation: Performance Comparison with a Tubular Packed-Bed Microreactor," Applied Catalysis A: General 116, 150 (2004).
- A, Luengnaruemitchai, S. Osuwan and E. Gulari. "Selective Catalytic Oxidation of CO in the Presence of H₂ Over Gold Catalyst," Int. J. Hydrogen Energy 29 (4), 429 (MAR 2004).
- Y-W Lee and E. Gulari, "Selective NOx Reduction With H₂+CO Over a Pd/Alumina Catalyst," Catalysis Communications 5, 499 (2004).
- J.J. Christopher Brown and E. Gulari, "Hydrogen Production From Methanol Decomposition Over Pt/Al₂O₃ and Ceria Promoted Pt/Al₂O₃ Catalysts," Catalysis Communications 5, 431 (2004).
- A.J. Hernandez-Maldonado, F.H. Yang, G. Qi and R.T. Yang, "Desulfurization of Transportation Fuels by π -Complexation Sorbents: Cu(I)-,Ni(II)-, and Zn(II)- Zeolites," Appl. Catal. B. 56, 111 (2005).
- F.H. Yang, A.J. Hernandez-Maldonado and R.T. Yang, "Selective Adsorption of Organosulfur Compounds from Transportation Fuels by Π-Complexation," Separ. Sci. Tech. 39, 1717 (2004).
- A.J. Hernandez-Maldonado and R.T. Yang, "Desulfurization of Transportation Fuels by Adsorption," Catalysis Reviews Sci. & Eng. 46, 111 (2004).
- C.H. Kim and L.T. Thompson, "Deactivation of Au/CeOx Water Gas Shift Catalysts," J. Catal. 230, 66 (2005).

Publications and Presentations

Presentations:

- E. Gulari, Y-W Lee, J. Cavataio, "NOx reduction with fuel processor gas," American Institute of Chemical Engineers Annual Meeting, Austin, TX, November 2004.
- E. Gulari, O. Srivannavit, S. Ocharoen, S. Srinivas, X. Zhou, "Silicon/Glass Microreactors for Biosynthesis and Heterogeneous Catalysis," American Institute of Chemical Engineers Annual Meeting, Austin, TX, November 2004.
- C.H. Kim and L.T. Thompson, "Surface Chemistry of Ceria-Supported Gold Water Gas Shift Catalysts," 7th Natural Gas Conversion Symposium, June 6-10, 2004.
- J. Patt, S. Bej and L. Thompson, "Carbide- and Nitride-Based Fuel Processing Catalysts," 7th Natural Gas Conversion Symposium, June 6-10, 2004.
- L. Thompson, "Microfabricated Fuel Cells and Novel Materials and Reactors for Hydrogen Production, "Shanghai Jo Tong University, Shanghai, China, June 24, 2004.
- A. Wong-Foy and L. Thompson, "Novel Supports: Preparation of Group VI Carbide and Nitride Supported Nickel Catalysts," American Institute of Chemical Engineers Annual Meeting, Austin, TX, November 2004.
- T.E. King, S.K. Bej and L.T. Thompson, "Water Gas Shift Mechanism for Carbide Supported Catalysts," American Institute of Chemical Engineers Annual Meeting, Austin, TX, November 2004.
- L. Thompson, "Nanomaterials for Hydrogen Production," Northwestern University, December 2, 2004.
- L. Thompson, "Materials for Hydrogen Production," Georgia Institute of Technology (Materials Science and Engineering Department), January 28, 2005.
- L. Thompson, "Carbide- and Nitride-Based Catalysts," ExxonMobil Corp., Baytown, TX, February 24, 2005.
- L. Thompson, "Catalytic and Surface Properties of Carbides and Nitrides," Southwestern Catalysis Society Meeting, Houston, TX, February 25, 2005.

Most significant hydrogen hazard associated with this project is:

Ignition of hydrogen in the exhaust from fuel processors. Ignition could cause fire, injuries to personnel and destruction of facilities.

Hydrogen Safety

Our approach to deal with this hazard:

- All hydrogen gas cylinders are equipped with flame arresters.
- All exhaust is vented into fume hoods.
- All heating elements are located away from potential hydrogen sources.
- Doors on fume hoods are always secured during the experiments.

