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Overview — Reforming of LPG

Timeline Barriers addressed
° Project start: October, 2004 * Efficiency
°* Project end: September, 2007 °* Cost

Budget
°* DOE share: 100%
* FYO05 funding: $400K

Relevance

°* LPG is widely available in urban and rural settings, and is
attractive for distributed fuel cell power
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Objectives and Approach

Objectives
Study reforming of liquefied petroleum gas
- Establish kinetics of propane reforming
- Steam reforming and autothermal reforming
- Address LPG reforming challenges

- Effect of propylene on reforming
- Sulfurin LPG

Approach
Study thermodynamic equilibria
- Effect of temperature, pressure, O:C, and H,O:C ratio
Establish reforming kinetics through experiments and models
- Experiments conducted at micro-reactor (<1 g of catalyst) level
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Higher H,0:C and temperatures favor higher
hydrogen yields at equilibrium
C,H; + H,0 — H,, CO, CO,, CH,, ...
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* At S:C>2 and T>500°C, carbon formation is not predicted
* 90% COx selectivities are anticipated at S/C=2, 675°C and 1 atm.
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Fuel processing efficiency depends
on the O:C and H,0:C ratios

CO,, H,0, N,, T

4Hg *+ 50, = 3CO, + 4H,0 100

CSHB
Air Reforming: C;Hg + xO, + yH,0 = 3CO,, + (10-2x)H,+ (y-6+2x)H,0 >
Water sHg + 50, = 3CO, + 4H,0 90 -
>
T
] :
C4Hg + Air e 80 1
X
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¢ C3H8 + x02 +yH20 —> C02 + H2 + Hzo QCJ
‘o 60 -
=
(a): Fuel combustion needed to maintain energy balance . 50 -
(b): Reforming is exothermic, sensible heat lost with products
(c): Combustion not needed, no sensible heat loss with products 40
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O/C Ratio
* Efficiency decreases with increasing O/C and S/C
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Experiments with two micro-reactors will help define kinetics,
mechanism, and suitable operating conditions

* Effect of temperature, pressure, space velocity
* Kinetic parameters, reaction pathways

Reactants
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The catalyst is active at temperatures as low as 340°C

° Propane Concentration in Feed:

° Propane Feed Rate:
20 ml/min (STP)

- C,Hg: 0.5% (wet); 1.7% (dry)

Temperature 300°C 340°C
vield | poo || pe

H, 2.092 | +0.135 | 4.811 | £0.315
CH, 0.597 | +0.093 | 0.838 | +0.177
co 0.016 | £0.005 | 0.018 | £0.007
co, 0.670 | £0.071 | 1.387 | 0.046
C,H; 0.009 | £0.002 | 0.003 | £0.002
C,H, 0.659 | £0.126 | 0.181 | +0.073

* Mol/(Mol of C,H; Feed)

Yield, mol/mol C;Hg
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°* P=1atm

* H,0:C Molar Ratio = 45

°* GHSV =122,000 per hour
* Catalyst : Rh/La-Al, O,

E300C [1325C m340C

H2 COx CH4 C3H8 C2H6
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Essentially complete conversion of propane is
achievable at 325°C, space velocity of 61,000 per hr

° Propane Concentration in Feed: °* P=1atm
- C;3Hg: 0.5% (wet); 1.7% (dry) * T=325°C
° Propane Feed Rate: * H,0:C Molar Ratio = 45
- 20 ml/min (STP) ° Catalyst : Rh/La-Al,O,
7ﬁ
6. g 0 SV=122,000 B SV=61,000
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* Mol/(Mol of C,H, Feed) 8
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Accomplishments

Thermodynamic equilibrium analysis has been done
Experimental apparatus has been assembled

- Apparatus has been safety reviewed

- Steam reforming experiments have started
A partial oxidation reactor has been designed

- Fabrication in progress
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Future Work

* Reaction data will be used in model to establish kinetic
parameters

- Effect of propylene and sulfur species during LPG reforming will
be studied to resolve any detrimental effect

* Reactor model will be set up to explore alternative designs
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Overview — Single Stage Water Gas Shift Reactor

Timeline Barriers addressed
° Project start: October, 2004 * Efficiency
°* Project end: September, 2007 * Cost

Budget
°* DOE share: 100%
* FYO05 funding: $450K

Relevance

* Single stage water gas shift reactors offer

- more compact fuel processors (desired in distributed fuel cell
systems)

- lower costs due to reduced catalyst loading 1
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Objectives

* Achieve water-gas shift conversion in a single-stage reactor
using
- Catalyzed reaction, enhanced by temperature control and
selective product removal
- Convert CO from ~10% to <1% (dry)

- Space velocity > 20,000 h-"
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Approach

(" Select a suitable WGS catalyst and establish its kinetics

*  Model the shift reactor under adiabatic, isothermal, and other
temperature profiles

I < * Design a laboratory reactor for experimental verification
- Without membrane separation

* Fabricate and test with temperature control to validate model
\.* Simulate reactor operation with membrane separation

n—= ° Evaluate potential membrane materials for WGS use

*  Continue WGS simulations using temperature control with
m=< anticipated membrane flux

* Confirm a compact WGS reactor — simulation and experimental
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Kinetics with a zero-order in CO favor compact
reactors achieving high conversions

Case (S/C=3): CO, (5.7%), H,0 (27.6%), CO (10.9%), H, (55.8%)

* The WGS reactor volume T g
(Vwas) as function of 4.5 Conversion for 1% CO (dry)
conversion and constant 40 \
flow rate depends on the ., | 5
reaction order, n, of the CO =
concentration: 2> Cu(12%)ALO.-support

g 25 (n=0.9)

£ 20] - |
- Established kinetics fora 3, | 19/Co-sunport
catalyst: Pt-Re/Ceg 462,050, | " N
CO order =0 05 | 5

- Basis: GHSV 1,000 /h
0.0 —_— w w w .
0.70 0.75 0.80 0.85 0.90 0.95

CO conversion (-)

_ (CCO)O X(q{ 0)0.4 mol
_ 16000RT z — 3
R=Axe X(ch )o.lgx(qqz )0-58 ’ (crﬁ’,Sj

Rioneering Hydrogen, Fuel Cells & Infrastructure
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A combination of reaction/heat exchange
enhances WGS rates

Temperature profile (°C)

450 +
425 |
400 |
375 |
350 |
325 |
300 |

275 |

Optimal temperature profile

/

(Tin=290 °C)

250’\\\\\\\\\\\\\\\\\\\\\\\\

diabatic temperature profile

0.0 0.2 0.4 0.6 0.8
Dimensionless reactor volume, V/Vo (-)

A WGS reactor with an optimal
temperature profile maximizes the
conversion within a given volume

CO molar fraction, dry (-)

0.14 T
0.12 A
L Adiabatic
010 1 (Tin=290 °C)
0.08 -
[ Isothermal
0.06 | (T=340 °C)
0.04 -
0.02 -
[ 1%COdry
000
0.0 0.2 0.4 0.6 0.8 1.0
Dimensionless reactor volume, V/Vo (-)
Parameters:

Catalyst: Pt-Re/Ce (1% Pt)
GHSV: 30,000 h-1
S/C: 4.0

Case (S/C=4): CO, (6.3%), H,0 (36.3%), CO (7.9%), H, (49.2%)
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Heat transfer rate (W/m2)

Foam support enhances heat transfer rates
and reduces transport limitations

10000 0.14 T
H L Case: S/C=4, GHSV=5000, T=280 °C
0.12
Corresponding heat transfer rate for a 40 PP| Fecralloy foam Coated plate
(5 mm in height) = 0.10
1000 | / g : H=2, WT=260
7 S 0.08 -
©
Y
‘e 0.06 - Coated plate
[} ™,
° 40 ppi foam N3 < H=1, WT=135
100 + g r 94% porosity \\
i / o 0.04 7 H=5, WT=33 —— "~ ™%,
Heat transfer rate for empty plates 0.02 - ™
) I H=Plate height (mm) Coated plate
- WT=Washcoat thickness (micron) H=0.5, WT=65
10 ‘ ‘ ‘ ‘ 000 —————rF————— ey
0.0 1.0 2.0 3.0 4.0 5.0 0.0 0.2 0.4 0.6 0.8

Plate height (mm) Dimensionless reactor volume, V/Vo (-)

Foam support offers several advantages:
- Increases heat transfer rates between coolant/WGS sides

- Minimizes transport limitations for the WGS reaction by dispersing the
washcoat into a high surface area support

- Can be co-sintered into different geometries if needed
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A parallel plate geometry is advantageous for
temperature control

Coolant side
Channel height

Reformate side

> A plate type reactor is a suitable

0.14

0.12 1

7

CO mole fraction dry (-)

0.02

reactor geometry to achieve an
integrated reactor/heat exchanger

0.10 |
0.08 |
0.06 |

0.04

0.00 | 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1

Ideal WGS temperature

~

ANL Heat Removal Strategy

GHSV=33,000

0.0 0.2 0.4 0.6 0.8 1.0
Dimensionless reactor volume, V/Vo (-)

Catalyst: Pt-Re/Ce (1% Pt)
GHSV: 20,000 hr?
» Heat exchange can be obtained using s/C: 4.0
co-, counter- or cross-flow, whichever ) ) o
reproduces the ideal temperature profile WGS: Tin=375°C
best Coolant: Air at 25°C
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The experimental reactor has been fabricated
and installed in the test apparatus

Reformate

Channel i isini
o oo e P 0 P o P P 0 R L
> e P P

—

Coolant
Channel

Reactor side view
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Temperature (°C)

Heat losses in the present reactor (width = 2.5 cm)
are significant after a length of 2 cm

450
L 2 cm from inlet
400 |
i 7 cm from inlet
350 T)
r 10 cm from inlet |
L 1
300 | =
k o
[ o
250 | 5
i k3
200 Air enters at 450 °C 8
i GHSV = 14500/h
150 |
100 i L L L } L L L L } L L L L } L L L L }
0.0 1.0 2.0 3.0 4.0 5.0
Insulation thickness (inches)
» The microreactor can lose heat

despite good insulation. Heat losses
must be compensated for with less
flow of coolant

450
400 |
350 |

300 |

0‘05 Wlm,K /
yd

0.09 W/m,K

0.25 W/im,K

Air enters at 450 °C
GHSV=14500/h

Temperature after 10 cm from inlet as
function of insulation thickness

0.5 1.0 1.5 2.0 25 3.
Insulation thickness (inches)

> A plate reactor with a width of 10 cm,
or a stacked WGS, is almost adiabatic
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Thin membranes favor H, removal

H2 permeation as function of membrane thickness (micron) * Flux not limited by bulk diffusion
0.5
VNS Reaction side:
0.45011 l N, (0.5) H, (0.5), L=10; W=2.54;
\ H=0.5 cm, P=1 atm
0.4 U0=2 cm/s, m=0.0934 g/min
~__ Membrane:
0.35. \ ‘ —~— | Pd (Basile et al), Pe (68 micron)
S T~ 2.56e-5 mol/(m?,s, Pa®?%)
\\ ~10 - Permeation side:
0.3+ \ 5 . |

N, (0.436 g/min), L=10; W=2.54,

\f \ ~ H=0.5 cm, U0=5 cm/s, P=1 atm

Hydrogen molar fraction (-)

0.25+ T
\ .
\ \\
0.2+ \ N |
\ I
0.15| — ]
% Reaction zone
0.1 | | ‘ ‘ ‘ ‘ | | ‘  membrane |
0O 01 02 03 04 05 06 07 08 09 1 _
Dimensionless axis (x/L) - 1 cooresponds to GHSV 720 Permeation zone

A
y

W
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Hydrogen removal is limited by residence time
in the reactor

Hydrogen permeation a function of GHSV (membrane=1 micron)

0.5

045/

o
~

0.35

o
w
T

0.25

Hydrogen molar fraction (-)

o
N

©

—_—

()]
\

o
—

\

10800

\“

0.1

o

\‘\
N 7200

\ 5000
\ \\\\ 3600

\\\\ §60 .

1440
720 .
| | | | |
02 03 04 05 06

Axial distance x/L (-)

* Flux not limited by bulk diffusion

* Reaction side:

N, (0.5) H, (0.5), L=10; W=2.54;
H=0.5 cm,

U0=2-40 cm/s, P=1 atm

*Membrane:
Pd (Basile et al), Pe (68 micron)
2.56e-5 mol/(m2,s, Pa®?%)

* Permeation side:

N, (0.436 g/min), L=10; W=2.54;
H=0.5 cm, U0=5-100 cm/s, P=1 atm
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°C

Ideal reactor temperature (

A pressure > 5 atm is needed to benefit from
selective product removal

450 0.14
400 0.12 * Concentration based on inlet molar flow
< 01
350 g
c
10atm 2 0.08¢
300 1atm &
5 0.06F | \\
250 | e
8 0.04
200 | 20atm | 0.02
150 ! ! ! ! 0 ! ! ! I
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
dimensionless x-axis (-) dimensionless x-axis (-)

WGS reactor results with temperature control and membrane separation (Pd, 1 micron).

Dimensionless axis corresponds to a GHSV of 20000 h-.

WGS Parameters:
S/C=4 (CH4 reforming, CO2=6.3%, H20=36.6%, CO=7.9%, H2=49.2%)
Foam (40 ppi), Catalyst=Pt/Ce (250 g/L)
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Depending on membrane flux, there is a pressure
threshold to benefit from H, separation

GHSV=20000h-1

0.98 - /
S 096 /
&
o GHSV=30000 h-1
c ~
S 0.94) .
@)
O

092

0.9 | | | |
0 3 10 15 20 25
Pressure (atm)
Assumptions: S/C=4, 1 ym Pd membrane
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Accomplishments

Developed a shift reactor model using parallel plate geometry
- Includes kinetics of Pt-Re/Ce catalyst
- Designed reactor with an optimized temperature profile
- Outlet CO of ~1% at a space velocity of 33,000 hr -
- CFD was used to predict flow, temperature, heat loss
- Fabricated experimental reactor to validate model
Used 1D model to analyze membrane performance
- H, separation is limited by membrane at low pressures (P<10 atm)
Low pressures limit GHSV

- Performance can be improved with sweep gas (preferably counter flow), thin
membranes (less than 1 um), high membrane surface area

- At high pressures membrane flux increases
- H, diffusion to membrane becomes predominant.
- Increasing pressure slows WGS kinetics due to inhibition of CO, and H,

- Due to slow hydrogen permeation, a membrane can worsen reactor performance
without separation unless the pressure is high enough to compete with the CO, and
H, inhibition effect
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Future Work

Validate model with data from experimental reactor
- Explore alternative (cross, counter) flow patterns and geometries

Expand model to design reactor that combines heat transfer
and separation

Demonstrate laboratory-scale single-stage water gas shift
reactor
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Hydrogen Safety

The most significant hazard of these experiments is the
possibility of leakage of hydrogen and carbon monoxide

The hazard has been addressed by
- Locating apparatus within a vacuum-frame hood
- Automated shutdown triggered by hood exhaust failure
- Laboratory is equipped with a CO sensor

26
> U.S. Depariment of Energy
7 | Energy Efficiency
and Renewable Energy

Hydrogen, Fuel Cells & Infrastructure
Technologies Program



	Fuel Processor R&D
	Overview – Reforming of LPG
	Objectives and Approach
	Higher H2O:C and temperatures favor higher hydrogen yields at equilibrium
	Fuel processing efficiency depends on the O:C and H2O:C ratios
	Experiments with two micro-reactors will help define kinetics, mechanism, and suitable operating conditions
	The catalyst is active at temperatures as low as 340°C
	Essentially complete conversion of propane is achievable at 325°C, space velocity of 61,000 per hr
	Accomplishments
	Future Work
	Overview – Single Stage Water Gas Shift Reactor
	Objectives
	Approach
	Kinetics with a zero-order in CO favor compact reactors achieving high conversions
	A combination of reaction/heat exchange enhances WGS rates
	Foam support enhances heat transfer rates and reduces transport limitations
	A parallel plate geometry is advantageous for temperature control
	The experimental reactor has been fabricated and installed in the test apparatus
	Heat losses in the present reactor (width = 2.5 cm) are significant after a length of 2 cm
	Thin membranes favor H2 removal
	Hydrogen removal is limited by residence time in the reactor
	A pressure > 5 atm is needed to benefit from selective product removal
	Depending on membrane flux, there is a pressure threshold to benefit from H2 separation
	Accomplishments
	Future Work
	Hydrogen Safety

