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Overview – Reforming of LPG

Timeline
• Project start: October, 2004
• Project end: September, 2007

Barriers addressed
• Efficiency
• Cost

Budget
• DOE share: 100%
• FY05 funding: $400K

Relevance
• LPG is widely available in urban and rural settings, and is 

attractive for distributed fuel cell power
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Objectives and Approach
Objectives
• Study reforming of liquefied petroleum gas

- Establish kinetics of propane reforming 
- Steam reforming and autothermal reforming

- Address LPG reforming challenges
- Effect of propylene on reforming
- Sulfur in LPG

Approach
• Study thermodynamic equilibria

- Effect of temperature, pressure, O:C, and H2O:C ratio
• Establish reforming kinetics through experiments and models

- Experiments conducted at micro-reactor (<1 g of catalyst) level
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Higher H2O:C and temperatures favor higher 
hydrogen yields at equilibrium
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• At S:C>2 and T>500°C, carbon formation is not predicted
• 90% COx selectivities are anticipated at S/C=2, 675°C and 1 atm.
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Fuel processing efficiency depends 
on the O:C and H2O:C ratios 

• C3H8 + xO2 + yH2O → CO2 + H2 + H2O

(a): Fuel combustion needed to maintain energy balance
(b): Reforming is exothermic, sensible heat lost with products
(c): Combustion not needed, no sensible heat loss with products 40
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• Efficiency decreases with increasing O/C and S/C

CO2, H2O, N2, …

Combustion: C3H8 + 5O2 = 3CO2 + 4H2O
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Experiments with two micro-reactors will help define kinetics, 
mechanism, and suitable operating conditions
• Effect of temperature, pressure, space velocity
• Kinetic parameters, reaction pathways
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The catalyst is active at temperatures as low as 340°C

• Propane Concentration in Feed:
- C3H8: 0.5% (wet); 1.7% (dry)

• Propane Feed Rate:
- 20 ml/min (STP)

• P = 1 atm
• H2O:C Molar Ratio = 45
• GHSV = 122,000 per hour
• Catalyst : Rh/La-Al2O3
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Essentially complete conversion of propane is 
achievable at 325°C, space velocity of 61,000 per hr

• Propane Concentration in Feed:
- C3H8: 0.5% (wet); 1.7% (dry)

• Propane Feed Rate:
- 20 ml/min (STP)

• P = 1 atm
• T = 325°C
• H2O:C Molar Ratio = 45
• Catalyst : Rh/La-Al2O3
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Accomplishments
• Thermodynamic equilibrium analysis has been done
• Experimental apparatus has been assembled

- Apparatus has been safety reviewed
- Steam reforming experiments have started

• A partial oxidation reactor has been designed
- Fabrication in progress
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Future Work

• Reaction data will be used in model to establish kinetic 
parameters
- Effect of propylene and sulfur species during LPG reforming will

be studied to resolve any detrimental effect
• Reactor model will be set up to explore alternative designs
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Overview – Single Stage Water Gas Shift Reactor

Timeline
• Project start: October, 2004
• Project end: September, 2007

Barriers addressed
• Efficiency
• Cost

Budget
• DOE share: 100%
• FY05 funding: $450K

Relevance
• Single stage water gas shift reactors offer 

- more compact fuel processors (desired in distributed fuel cell 
systems)

- lower costs due to reduced catalyst loading
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Objectives
• Achieve water-gas shift conversion in a single-stage reactor 

using
- Catalyzed reaction, enhanced by temperature control and 

selective product removal
- Convert CO from ~10% to <1% (dry)
- Space velocity > 20,000 h-1
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Approach
• Select a suitable WGS catalyst and establish its kinetics
• Model the shift reactor under adiabatic, isothermal, and other 

temperature profiles
• Design a laboratory reactor for experimental verification 

- Without membrane separation

• Fabricate and test with temperature control to validate model
• Simulate reactor operation with membrane separation

• Evaluate potential membrane materials for WGS use

• Continue WGS simulations using temperature control with 
anticipated membrane flux

• Confirm a compact WGS reactor – simulation and experimental

II

III

I



14

Pioneering 
Science and
Technology EEREHydrogen, Fuel Cells & Infrastructure 

Technologies Program

Kinetics with a zero-order in CO favor compact 
reactors achieving high conversions
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A combination of reaction/heat exchange 
enhances WGS rates 
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Foam support enhances heat transfer rates 
and reduces transport limitations
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Foam support offers several advantages:
- Increases heat transfer rates between coolant/WGS sides

- Minimizes transport limitations for the WGS reaction by dispersing the      
washcoat into a  high surface area support

- Can be co-sintered into different geometries if needed
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A parallel plate geometry is advantageous for 
temperature control

A plate type reactor is a suitable 
reactor geometry to achieve an 
integrated reactor/heat exchanger 

Heat exchange can be obtained using 
co-, counter- or cross-flow, whichever 
reproduces the ideal temperature profile 
best
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The experimental reactor has been fabricated 
and installed in the test apparatus

Reactor side view

Thermocouples

Insulation

InsulationReformate
Channel

Coolant
Channel
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Heat losses in the present reactor (width = 2.5 cm) 
are significant after a length of 2 cm
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Thin membranes favor H2 removal 
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Hydrogen removal is limited by residence time 
in the reactor

• Reaction side:
N2 (0.5) H2 (0.5), L=10; W=2.54; 
H=0.5 cm,
U0=2-40 cm/s, P=1 atm

•Membrane:
Pd (Basile et al), Pe (68 micron)
2.56e-5 mol/(m2,s, Pa0.5)

• Permeation side:
N2 (0.436 g/min), L=10; W=2.54; 
H=0.5 cm, U0=5-100 cm/s, P=1 atm

• Flux not limited by bulk diffusion
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A pressure > 5 atm is needed to benefit from 
selective product removal   
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Depending on membrane flux, there is a pressure 
threshold to benefit from H2 separation
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Accomplishments
• Developed a shift reactor model using parallel plate geometry

- Includes kinetics of Pt-Re/Ce catalyst
- Designed reactor with an optimized temperature profile 

- Outlet CO of ~1% at a space velocity of 33,000 hr -1

- CFD was used to predict flow, temperature, heat loss
- Fabricated experimental reactor to validate model

• Used 1D model to analyze membrane performance 
- H2 separation is limited by membrane at low pressures (P<10 atm)
- Low pressures limit GHSV

- Performance can be improved with sweep gas (preferably counter flow), thin 
membranes (less than 1 µm), high membrane surface area

- At high pressures membrane flux increases 
- H2 diffusion to membrane becomes predominant. 

- Increasing pressure slows WGS kinetics due to inhibition of CO2 and H2

- Due to slow hydrogen permeation, a membrane can worsen reactor performance 
without separation unless the pressure is high enough to compete with the CO2 and 
H2 inhibition effect
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Future Work

• Validate model with data from experimental reactor
- Explore alternative (cross, counter) flow patterns and geometries

• Expand model to design reactor that combines heat transfer 
and separation

• Demonstrate laboratory-scale single-stage water gas shift 
reactor
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Hydrogen Safety

• The most significant hazard of these experiments is the 
possibility of leakage of hydrogen and carbon monoxide

• The hazard has been addressed by
- Locating apparatus within a vacuum-frame hood
- Automated shutdown triggered by hood exhaust failure
- Laboratory is equipped with a CO sensor
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