

Hydrogen, Fuel Cells and Infrastructure Technologies Program

Fuel Cell Testing at ANL: Procedures, Activities, and Hydrogen Safety

E. Polzin and I. Bloom Argonne National Laboratory

2005 DOE Hydrogen Program Review May 23-26, 2005

Argonne National Laboratory

A U.S. Department of Energy Operated by The University of Chicago

This poster does not contain any proprietary or confidential information.

Overview and Objectives

• Timeline

- Facility Planning: 1996
- Facility Commissioned: 1999
- End: Open this is an ongoing activity to test/validate/document fuel cell performance as the technology continues to evolve and improve

Budget

- FY04: \$300K
- FY05: \$300K

• Objectives

- To provide DOE with an independent assessment of DOE contract deliverables
- To benchmark performance of the state-of-the-art fuel cell technology

Technical Targets for Hydrogen Fueled PEM Fuel Cell Stacks

Characteristics	<u>Units</u>	<u>2005</u>	<u>2010</u>	<u>2015</u>
Stack Efficiency @ 25% of rated power	%	65	65	65
Stack Efficiency @ rated power	%	55	55	55
Stack Power Density	W/L	1500	2000	2000
Stack Specific Power	W/kg	1500	2000	2000
Cost	\$/kW _e	65	30	20
Transient response (time from 10% to 90% of rated power)	Sec	2	1	1
Cold start-up time to maximum power @ -20°C ambient temperature @ 20°C ambient temperature	Sec Sec	60 30	30 15	30 15
Precious Metal Loading	g/kW	2.7	0.3	0.2
Durability with thermal cycling	Hours	2000	5000	5000
Survivability	°C	-30	-40	-40

Standards and Procedures

<u>Testing Standards</u>

- ASME PTC50-2000: Fuel Cell Power Systems Performance
 - Provides guidance for the evaluation of fuel cell power systems to determine power output and efficiency
- SAE J2578 and J2616 standards
 - Recommended Practices for General Fuel Cell Vehicle Safety and Performance Test Procedures for the Fuel Processor Subsystem of Automotive Fuel Cell System
- Energy Efficiency @ 25% of rated power and rated power
 - Operate stack at power level for at least one hour and measure fuel consumption
 - This test excludes parasitic power consumption
- Power Density / Specific Power / Cost
 - Verify rated power, measure weight and volume

Standards and Procedures (2)

<u>Transient Response</u>

- Operate stack at 10% of rated power until operating conditions are stable
- Perform a 10% to 90% rated power jump; the time between the reactant change and load change is the response time (time to meet the demand)
- Operate stack at 90% of rated power until operating conditions are stable
- Perform a 90% to 10% rated power jump; the time between the reactant change and load change is the response time
- Bare stacks can readily meet the transient performance targets. System performance is yet to be verified

Standards and Procedures (3)

- Cold start-up time to maximum power (planned)
 - Cold Start #1: (less realistic, but cheaper to implement)
 - Cool stack/system down to target temperature and soak for at least 8 hours
 - Remove cooling system and start stack (Allow it to heat itself and surroundings)
 - Cold start #2: (more realistic, but expensive to implement)
 - Cool stack/system down to target temperature and soak for at least 8 hours
 - Start system while still maintaining the cold ambient temperature
 - Measure start-up energy

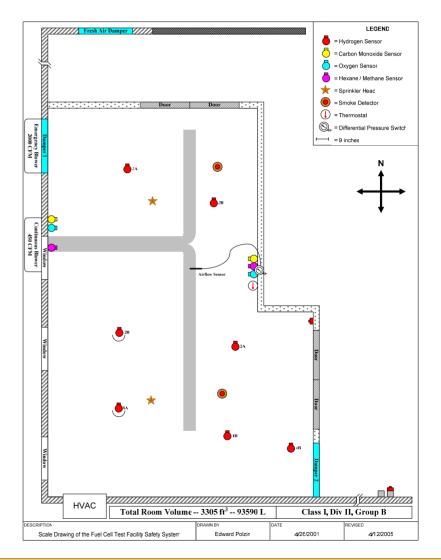
Standards and Procedures (4)

• Durability (planned)

- Benchmark stack performance as delivered
- Run a meaningful transportation duty cycle repeatedly for a suitable period of time
- Re-evaluate stack performance after the cycling period and the repeat the duty cycles

Survivability (planned)

- Benchmark stack performance as delivered
- Cool stack/system down to target temperature and soak for at least 8 hours
- Increase temperature to normal operating point and re-evaluate stack performance



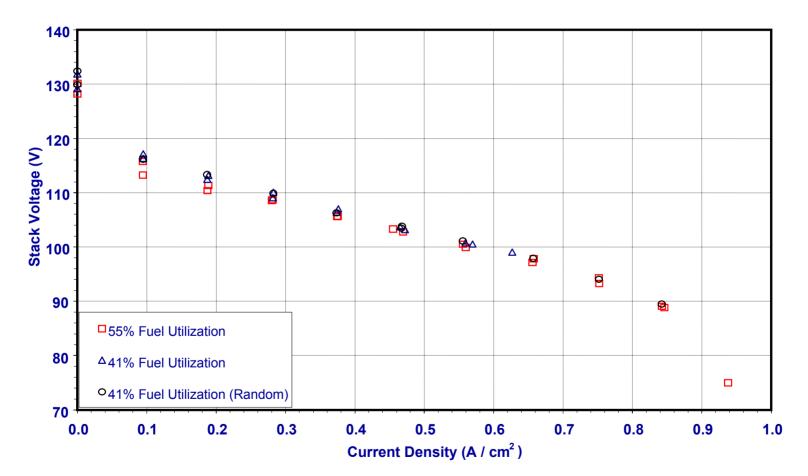
Facility Safety Systems in Fuel Cell Test Facility (FCTF)

- Two Levels of Alarm: Warning and Danger
 - Warning Testing is suspended and fuel supply is shut off
 - Danger Same as warning with the addition of fire department notification, emergency ventilation system activated, facility power removed from non-critical instruments
- Continuous room ventilation takes care of most small hydrogen leaks
- Stacks are checked for leaks with static pressure tests before introducing reactants

Warning	<u>Danger</u>	
Hydrogen detected greater than 0.8% in air (20% of LFL)	Hydrogen detected greater than 1.6% in air (40% of LFL)	
Emergency stop button pressed	Loss of continuous room ventilation	
Loss of principle power	Smoke / Fire / Explosion (no emergency room ventilation activated)	

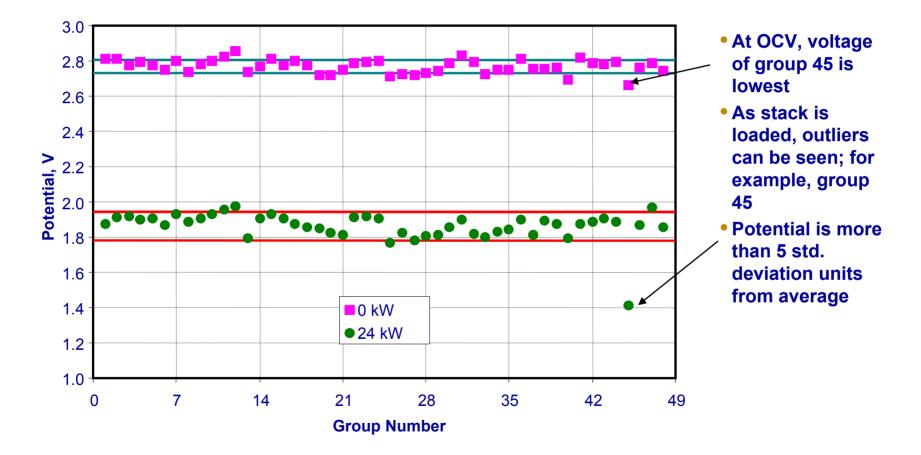
Evaluation Experience

- Bare stacks: 720 W_e to 72 kW_e
- Complete Systems: 10 kW_e to 50 kW_e
- Partial Systems: 200 kW_{th} reformer



Evaluation Experience (2)

Polarization Results from a Stack Test using H₂



Evaluation Experience (3)

String Voltage Variation During Polarization Curve Experiment

Summary

- The FCTF provides data to sponsors for an unbiased gauge of technology development
- As test methods become standardized, the FCTF includes them in its testing protocols and methods
- FCTF is responsive to the needs of the sponsors, fuel cell developers, and end users within budgetary constraints
- FCTF is planning to obtain environmental chambers capable of testing full size systems from -40 to +50 °C
- FCTF is planning to upgrade it's current capabilities to provide fullyautomated, 10 – 100 kW testing capabilities

Acknowledgment

This work was performed under the auspices of the US Department of Energy, Office of Hydrogen, Fuel Cells and Infrastructure, under Contract No. W-31-109-Eng-38.

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

