

Project: FCP5

Chris J. Cornelius, Cy H. Fujimoto, Michael A. Hickner

Sandia National Laboratories

Chemical and Bio Technologies P.O. Box 5800 Albuquerque, NM 87185

May 11th 2005

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

This presentation does not contain any proprietary or confidential information

Overview

Hydrocarbon PEMFC Membrane

Timeline

- Start Date: 3/15/05
- End date: 9/30/05
- Project Completion: 30%

Budget

- Total project funding
 - DOE share: \$150K
 - Contractor share: \$0K
- Funding received in FY04: \$0K
- Funding for FY05: \$150K

Partners

Interactions and Collaborations - None

Technical Barriers

Direct Methanol Fuel Cells Barriers: B,C,D,F

High Temperature Membranes for Distributed Power Applications Barriers: A,D,I

Advanced Membrane R&D Barriers: A,C,D,I

MEA Materials, Components, and Processes

Barriers: A,B,C

Advanced MEA Meeting 2010 Targets Barriers: A,B,C,D

Cold Start Barriers: A,B,C,D,H,J

Barriers and Targets PEMFC Membrane

Table 3.4.12. Technical Targets: Membranes for Transportation Applications					
Characteristic	Units	2004 Status	2005	2010	2015
Membrane Conductivity at Operating Temperature Room temperature –20°C	S/cm S/cm S/cm	0.10 0.07 0.01	0.10 0.07 0.01	0.10 0.07 0.01	0.10 0.07 0.01
Operating Temperature	°C	<u>≤</u> 80	≤120	≤120	≤120
Inlet water vapor partial pressure	kPa (absolute)	50	25	1.5	1.5
Oxygen cross-over ^a	mA/cm ²	5	5	2	2
Hydrogen cross-over ^a	mA/cm ²	5	5	2	2
Cost	\$/m ²	65 [⊳]	200	40	40
Durability with cycling At operating temp of ≤80°C At operating temp of >80°C	hours hours	~1000° not available°	2000	5000ª 2000	5000ª 5000ª
Survivability	°C	-20	-30	-40	-40
Thermal cyclability in presence of condensed water		Yes	Yes	Yes	Yes

* Tested in MEA at 1 atm O2 or H2 at nominal stack operating temperature.

^b Based on 2004 TIAX Study and will be periodically updated.

^c Durability is being evaluated. Steady-state durability is 9,000 hours.

^d Includes typical driving cycles.

* High-temperature membranes are still in a development stage and durability data are not available.

Barriers Addressed

- Membrane Areal Resistance
- Operating Temperature
- Survivability (-20°C to 120°C)
- Catalyst Loading
- Fuel Cell Performance

Table 3.4.14. Technical Targets: MEAs					
Charaoteristio	Units	2004 Status	2005	2010	2015
Operating Temperature	°C	<u><</u> 80	<u><</u> 120	<u>≤</u> 120	<u><</u> 120
Inlet water vapor partial pressure	kPa (absolute)	50	25	1.5	1.5
Cost ^a	\$/kW	40 ⁶	50	15	10
Durability with cycling At operating temp of <u>≤</u> 80°C At operating temp of >80°C	hours hours	~1000° not available®	2000	5000ª 2000	5000ª 5000ª
Survivability Temperature	°C	-20	_30	-40	-40
Total Catalyst Loading (both electrodes) ^r	g/kW (rated)	1.1	2.7	0.33	0.20
Performance @ 14 power (0.8V)	mA/cm² mW/cm²	200 160	250 200	400 320	400 320
Performance @ rated power	mW/cm²	600	800	1280	1280
Extent of performance degradation over lifetime ⁹	%	10	10	10	10
Thermal cyclability in presence of condensed wate	er	Yes	Yes	Yes	Yes

* Based on 2002\$ and cost projected to high-volume (500,000 stacks per year).

^b Based on 2004 TIAX Study and will be periodically updated.

^o Durability is being evaluated. Steady-state durability is 9,000 hours. ^d Includes typical driving cycles.

" includes typical driving cycles. • High-temperature membranes are still in a development stage and durability data are not available.

¹ Equivalent total precious metal loading (anode + cathode): 0.1 mg/cm² by 2010 at rated power.

Precious metal target based on cost target of <\$3/kW precious metals in MEA [@\$450/troy ounce (\$15/g) and loading of < 0.2 g/kW_].

⁸ Degradation target includes factor for tolerance of the MEA to impurities in the fuel and air supply.

Project Objectives

Task and Milestone Schedule

Subtask 1.1 - Low Humidity Fuel Cell PEM						
		Target	Revised	Actual	% Complete	Progress
1.0	Funding Approval	10/1/04		3/1/05		Funding Receipt dictates schedule
1.1.1	Synthesize first generation SPEA materials and characterize physical properties (DSC, TGA, DMA, IR, water-uptake, IEC, Tensile Strength, and EA).	04/05	05/05			On-Track
1.1.2	Characterize SPEA ion conductivity from 10 - 100%RH at 0°C to 100°C as a function of IEC.	07/05	08/05			On-Track
1.1.3	Demonstrate that first generation SPEA has an ion conductivity at 80°C and 75 %RH of 0.1 Ω^{-1} cm ⁻¹ .	09/05				On-Track
1.1.4	Initiate development of novel SPEA materials based upon activity-structure relationships for this study.	10/05				On-Track
C L L						
Subta	sk 1.2 - SPEA Catalyst Coating Membrane Studies				0/	
		Target	Revised	Actual	Complete	Progress
1.2.1	Establish electrochemical activity benchmark for Nafion-based electrodes and establish test protocol for SPEA-based electrodes	03/05	06/05			On-Track
1.2.1	Establish electrochemical activity benchmark for Nafion-based electrodes and establish test protocol for SPEA-based electrodes	03/05	06/05			On-Track
1.2.2	Demonstrate the SPEA performance of a CCM with Nafion and SPEA in the electrode structure at a total catalyst loading of 0.4 mg/cm^2	05/05				On-Track
1.2.3	Demonstrate that SPEA has a Hydrogen and Oxygen crossover current of $< 7 \text{ mA/cm}^2$ at 80 °C and 25 %RH.	07/05	08/05			On-Track
1.2.4	Demonstrate a SPEA CCM with SPEA in the electrode with a membrane aerial resistance of $0.07 \ \Omega^{-1} \cdot \text{cm}^{-2}$ at 80 °C and 25 %RH.	09/05				On-Track
1.2.5	Initiate development of SPEA CCM materials with reduced reactant crossover and increased fuel cell performance over initial materials and Nafion based upon an activity-structure relationship.	10/05				On-Track

Overview

Improving Fuel Cell Membranes

Gas & Liquid Transport - MEA

- Oxygen & Hydrogen
- Water (Cathode)

Fuel Cross-Over - PEM

- Oxygen & Hydrogen
- <u>Methanol</u>

Stability – PEM & MEA

- Temperature
- Chemical
- Dimensional & Mechanical
- Electrode Interface

Conductivity – PEM & MEA

- Low Humidity
- High Temperature (>120 °C)

Need: Development of a *PEM that requires little to no water for proton conduction!*

PEM and MEA Challenge

Minimizing Losses

Research Approach Sandia's PEM and MEA Research

Supramolecular Templating

Research Goal

Hydrocarbon PEMFC Membrane

Research GOAL: Develop and Demonstrate a Low Relative Humidity PEM and MEA based upon alternative PEM technology

- PEM & MEA Development
- Electrode Development
- Fuel Cell Testing

PEM Development

Polymer

– Hybrid Composites

Collaborations

– Labs & Universities

Fuel Cell Testing

– PEM & MEA Validation– Lifetime & FC Stress Testing

Industry – Real World Problems

Polyphenylenes

Sulfonated Diels-Alder Polymer (SDAPP)

- Thermal Stability
- Good Chemical Stability
- Low Fuel Cross-Over
- Gas Transport (*Tunable*)
- Low Interfacial Resistance (*MEA* – *Electrodes*)
- Chemical Diversity
- Proton Conductivity
- Morphology

- Thermal Stability: 120 °C
- High Ionic Conductivity (0.1 S/cm)
- Improved Mechanical Properties (10x Stiffer)
- Cross-Over Resistance to MeOH (3x Lower)
- Membrane Electrode Assemblies (Nafion vs DA) 40 % more Power at 80°C & O_2/H_2 20 % more Power at 80°C & O₂/MeOH (0.5 M)

Sandia

Thermochemical Stablility

Improving Fuel Cell Membranes

Thermal Stability

 SDAPP family demonstrates ability to retain SO3H groups and maintain its structure above 200°C as determined by TGA in air

Chemical Stability

 SDAPP survives Fenton's Test for > 2 hrs while other alternative PEM's dissolve at these conditions

IMPACT: PEM & MEA stability *Fuel Cell Stack Life!*

Time	Weight Loss	η_{int}
Hours	(%)	(dL/g)
0	0	1.8
2	2	1.5
5	5	1.2
8	7	1.1
12	12	0.9

La Conti, A. B.; Hamdan, M.; McDonald, R. C. Handbook of Fuel Cells – Fundamentals, Technology and Applicatns, 2003, 647 - 662.

Fuel Cell Research Improving Fuel Cell Membranes

Hydrogen Crossover In-situ MEA Testing

SDAPP membranes show lower crossover currents and permeability than N112 especially at higher temperatures.

Fuel Cell Program

Fuel Cell Performance

30 wt% Nafion Binder

	HFR (Ω -cm ²)
80C 100% RH	0.11
80C 50% RH	0.60

Large losses in Nafion-based MEAs at low RH due to decreased membrane conductivity and proton transport resistance in electrodes.

SDAPP 2.2 meq/g IEC membrane

5.8 mil thick Nafion 1100 electrodes 29 wt % polymer in electrodes H2 200sccm Air 500 sccm 20 psig

Fuel Cell Program

Fuel Cell Performance

30 wt% SDAPPe Binder

	HFR (Ω -cm ²)
80C 100% RH	0.08
100C 100% RH	0.05
80C 50% RH	0.75

30 wt % SDAPPe electrodes show two mass transport limiting steps. Increasing the operating temperature of the cell alleviates this problem. Still poor performance at 50% RH.

SDAPP 2.2 meq/g IEC membrane

1 mil thick SDAPPe electrodes 120mS/cm 29 wt % polymer in electrodes H2 200sccm Air 500 sccm 20 psig

Fuel Cell Performance

15 wt% SDAPPe Electrode Binder

	HFR (Ω -cm ²)
80C 100% RH	0.06
100C 100% RH	0.10
80C 50% RH	0.21

No mass transport limiting behavior at intermediate current densities with 15 wt % SDAPPe in electrode. Also 50% RH performance is improved with lower wt % ionomer in electrode layer.

SDAPP4 Membrane

0.8 mil thick SDAPPe electrodes 120mS/cm 15 wt % polymer in electrodes H2 200sccm Air 500 sccm 20 psig

Fuel Cell Performance

Nafion vs. SDAPPe Electrodes: 80°C and 50% RH

Catalyst layers with greater ionomer binder contents show large activation and transport losses at low RH.

15 wt % ionomer binder in the electrode shows superior mass transfer performance, but there are problems in the activation region.

SDAPP4 Membrane

1 mil thick 80°C cell temperature H2 200sccm Air 500 sccm 20 psig 50% RH gas feeds

Fuel Cell Performance SDAPPe Electrodes: 120°C and 50% RH

Low ionomer binder content in SDAPP-based electrodes may provide routes to high performance electrodes at low RH.

Can currently match Nafion performance with an MEA based entirely on SDAPP with slightly higher Pt loadings.

120°C Cell temperatureH2 200sccmAir 500 sccm20 psig50% RH gas feeds

Fuel Cell Performance SDAPPe Electrodes: 120°C and 50% RH

Low ionomer binder content in SDAPP-based electrodes may provide routes to high performance electrodes at low RH.

Can currently match Nafion performance with an MEA based entirely on SDAPP with slightly higher Pt loadings.

120°C Cell temperatureH2 200sccmAir 500 sccm20 psig50% RH gas feeds

Fuel Cell Performance

Elevated Temperature: 120°C and 50% RH

Thermal Stability

 SDAPP family demonstrates ability to retain SO3H groups and maintain its structure above 200°C as determined by TGA in air

Chemical Stability

 SDAPP survives Fenton's Test for > 2 hrs while other alternative PEM's dissolve at these conditions

IMPACT: PEM & MEA stability *Fuel Cell Stack Life!*

0.4 mg/cm2 (Pt Black) A/C: H2 (200sccm) and Air (500sccm)

Future Work

Improving Fuel Cell Membranes

Enhanced Acidity

– Acid Groups

Enhaced Hydration Properties

- Imidazole Functionalized SDAPP
- Inorganic Domain Type

Inorganic Domain Conductivity

– HPAs & HPA Sol-Gel Materials

Polymer Structure-Property

- Controlled Sulfonation
- Structured Materials
- Crosslinking
- Blends

Polymer Hybrid Composites

Proton - Conductive Inorganic Domains

Future Work Controlling Gas Transport

Gas Transport (Tunable)

 SDAPP has diversity in chemistry to address unique PEM and MEA needs

Lower Interfacial Resistance

• SDAPP can be substituted into electrode structure

Stability

 SDAPP has good thermal and chemical stability, high Tg, and high modulus that will enable the formation of mechanically stable thin films

Barrer = 10^{-10} cm³/cm² s cm of Hg (at STP)

Fujimoto, C.; Loy, D.A.; Cornelius, C; Wheeler, D. R.; Jamison, G. M. Manuscript in Preparation, *J. Membrane Sci.*

Conclusions

Improving Fuel Cell Membranes

- Demonstrated Promising H₂ Fuel Cell Performance with 1st Generation SDAPP Family from RT to 120°C and recognize need for improved systems.
- Post-Sulfonation Crude... Future work will utilize functionalized monomers that will lead to controlled PEM morphology
- Capabilities Established: Material design and synthesis, characterization, device testing, system performance measurements, and predictions
- Opportunity to arrive at improved materials through newer generation materials.

Project Safety

- Primary Hazard Screening in place for all labs and workers are experienced with the use of equipment and chemicals.
- Safeguards in place to minimize electric hazards. Hydrogen and oxygen are kept separate and vented into hoods.
- Training and standard operating procedure for all test equipment in all labs.

Hydrogen Safety

The most significant hydrogen hazard associated with this project is:

Hydrogen leaks from fuel cell and its combining with Oxygen or other oxidant sources.

Our approach to deal with this hazard is:

We have removed all oxidants from the lab. Our fuel cell lab is sole designated for fuel cell research. Pressure release valves and flow restriction valves are located on all gas cylinders and oxygen and hydrogen cylinders are located away from each other as prescribed by our ES&H staff. All exhausted gases from the fuel cell are vented separately into a ventilation hood to dilute hydrogen below its explosion limit.

