

Novel, Combinatorial Method for Developing Cathode Catalysts for Fuel Cells

Keith D. Kepler Farasis Energy, Inc. 5-23-05

This presentation does not contain any proprietary or confidential information

Project ID: # FCP9

Overview

Timeline

- Start Date: October, 2004
- End Date: July, 2006
- 15% Completed

Budget

- Phase II SBIR
- Total Project Funding\$750,000
- 2004 Funding: \$60,000
- 2005 Funding: \$350,000

Barriers

- Low activity of non-Pt catalysts
 - 2004 Status: 8 A/cm³
 - 2010 Target: >130 A/cm³

Partners

• Illinois Institute of Technology

- Develop a highly controlled method for accurate high-throughput evaluation of new catalyst materials.
- Scale up combinatorial approach: Sample preparation, screening system and data processing.
- Evaluate several families of catalysts for oxygen reduction activity.
- Scale up new, low-cost high-activity catalysts for evaluation in fuel cells.

Why Combinatorial Approach for Catalyst Development?

Barriers to rational design.

- Complex surface chemistry.
- Lack of a complete understanding of the reaction processes involved.
- Many possible catalyst permutations (not confined by equilibrium phases).
- Screening in parallel allows for better evaluation of relative performance.
- Can potentially greatly reduce the cost of optimization and accelerate the discovery of new catalysts.

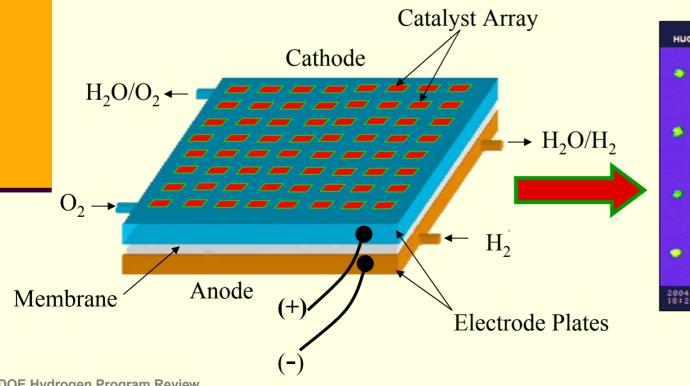
Barriers to Accurate Combinatorial Screening of Catalysts

Lack Control of Catalyst Morphology:

Material variations not associated with chemical activity. (surface area, morphology etc.)

Lack control of MEA Structure:

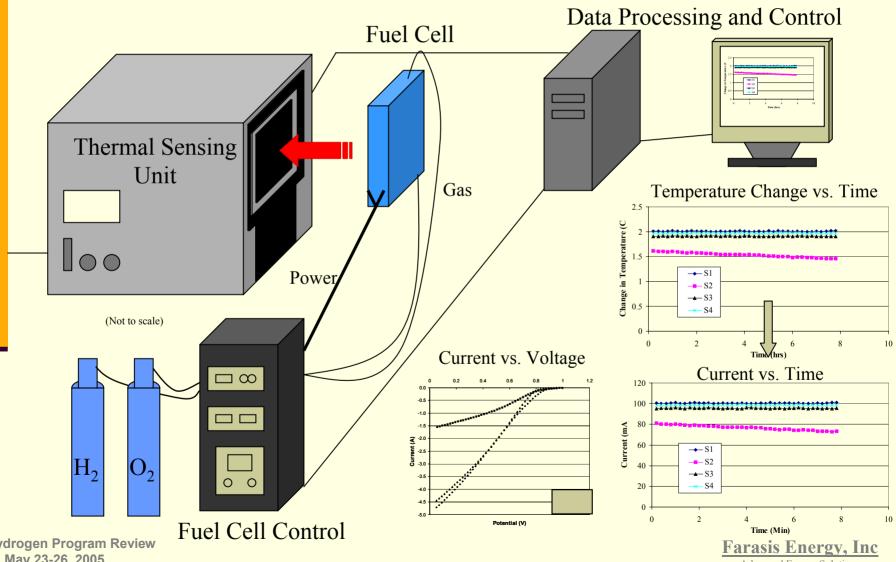
- Slurry and coating variations affecting accessible active sites in the MEA. (Catalyst wetting characteristics, surface area, morphology, etc, MEA porosity, loading etc)
- Non-uniform fuel distribution to catalyst samples. (concentration changes downstream, MEA variations sample to sample etc.)
- Testing conditions may complicate interpretation of results.
- Screening method limits type of catalysts that can be evaluated.
- **Expense of assay.**



Technical Approach

Thermal Sensing

Thermal sensing allows for in-situ monitoring of individual catalysts samples in a closed fuel cell system.



Thermal Image

Farasis Energy, Inc Advanced Energy Solutions

DOE Hydrogen Program Review May 23-26, 2005

Fuel Cell Catalyst Screening System

Advanced Energy Solutions

DOE Hydrogen Program Review May 23-26, 2005

ARASIS

Phase II Project Catalyst Development Strategy

- Identify best chemistry first then optimize for utilization.
- Control all critical parameters to determine inherent catalyst activity.
- Use systematic DOE techniques to design catalyst array compositions and testing condition variables.

Technical Approach Advantages

- No limitations on types of catalysts or which catalytic processes can be screened.
- In-situ screening under real operating conditions.
- Good control of critical parameters that affect fuel cell efficiency.
- Determine long term stability under real operating conditions.
- Easy sample preparation.
- Low cost.

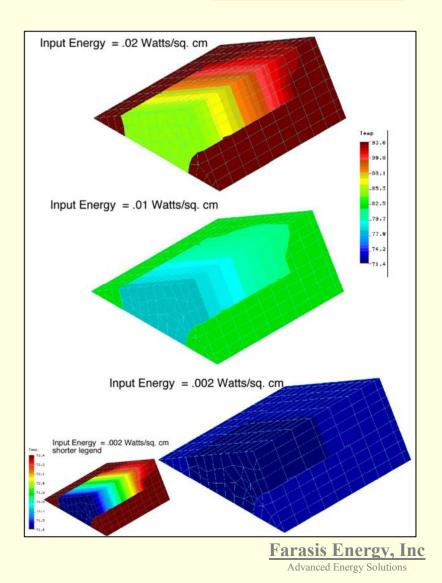
Technical Accomplishments/ Progress/Results

Finalized screening system design and verified performance.

- Uniform stack pressure.
- Uniform fuel distribution.
- Uniform heat signal.

Progress on high throughput sample preparation system.

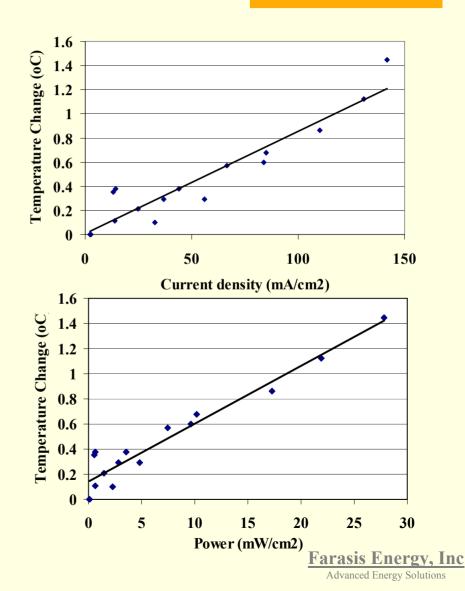
Identified promising, high-activity non-Pt catalysts.



Thermal Modeling to Aid System Design

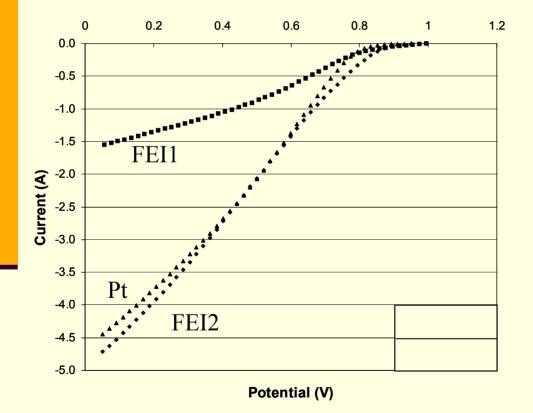
Developed design in miniature before scale up.

- 35 cm² array cell.
- Accelerates development cycle.
- Lowers cost of development.
 - Smaller MEA's
 - Fewer Samples.
 - Less Labor.



DOE Hydrogen Program Review May 23-26, 2005

Verification of Thermal Signal Correlations


- Initial evaluation of thermal signal.
- Strong correlation between current/power density and catalyst sample temperature change.
- Sample temperature change was sufficient to detect by conventional methods.

Non-Pt Catalyst Family with High Activity

Verify Screening Results in Standard Fuel Cell

Temperature: 80°C

- Cathode gas: O₂
- Anode gas: H₂
- Img Pt cm⁻²

- Scale up screening system to 50-100 samples/cell.
- **Continue data processing software development.**
- Complete sample preparation systems.
- Continue large scale screening of non-noble metal catalysts.
- Verify results in standard fuel cells.

Hydrogen Safety

The most significant hydrogen hazard associated with this project is:

- > Hydrogen is a combustible gas.
- > Explosion hazard when mixed with air/oxygen.
- > Hydrogen gas leaks from gas lines to fuel cells.

Hydrogen Safety

Our approach to deal with this hazard is:

- ➢ Installed hydrogen detectors.
- > Protect system from potential ignition sources.
- Perform inert gas (N₂ or Ar) purging before hydrogen is introduced to line.
- Vent hydrogen according to standard regulations.
- Staff always present when hydrogen is being used.

