2005 Annual DOE Hydrogen Program Review Hydrogen Production & Delivery

Pete Devlin DOE, Energy Efficiency and Renewable Energy (EERE) Hydrogen Program Hydrogen Production Team Leader May 23, 2005

State of the Art Near-term technologies

- Distributed Natural Gas Steam Methane Reforming: \$4-5/gasoline gallon equivalent (gge) delivered
- Electrolysis: \$4.75 5.15/gge delivered

Sunline HyRadix Reformer

DOE Hydrogen Production Technology Research Portfolio

<u>EERE</u>

- Distributed natural gas and bio-derived liquid reforming
- Electrolysis
- Reforming biomass gas from gasification/pyrolysis
- Biological hydrogen production
- Photoelectrochemical hydrogen production
- Solar HT thermochemical cycles
- Separations
- Office of Fossil Energy
- Coal gasification with sequestration

Office of Nuclear Energy

- Nuclear driven HT thermochemical cycles
- HT electrolysis

Office of Science

• Basic research on materials and catalysts

Hydrogen Production Barriers Cost and Energy Efficiency

Distributed Reforming Using Natural Gas and Renewable Liquids

- Intensified, lower capital cost, more efficient NG reformer technology
- Improved catalysts and technology for renewable liquid reforming
 - Ethanol, sugar alcohols, bio-oil

Electrolysis

- Low cost materials and high efficiency system designs
- Integrated compression
- Integrated wind power/electrolysis systems

Biomass Gasification

• Integrated gasification, reforming, shift and separations technology to reduce capital cost and improve efficiency.

H2Gen HGM 2000

NREL solar research Mesa top facility

Solar/Photolytic

- Durable and efficient materials for direct photoelectrochemical solid state water splitting using sunlight
- Microorganisms that split water using sunlight or produce H2 through fermentation
- Thermochemical cycles, solar concentrators, receivers/reactors to split water (600 – 2000 C)
 - Effective and efficient thermochemical cycles
 - Reduced capital cost of the solar concentrator

New Hydrogen Cost Goal for 2015

- Pathway independent
- Consumer fueling costs are equivalent on a cents per mile basis
- Gasoline ICE and gasoline-electric hybrids are benchmarks
- Provide a "yardstick" for assessing technology performance

Hydrogen Cost Goal for 2015

\mathbf{N}/\mathbf{I}	0	ar	21
			10

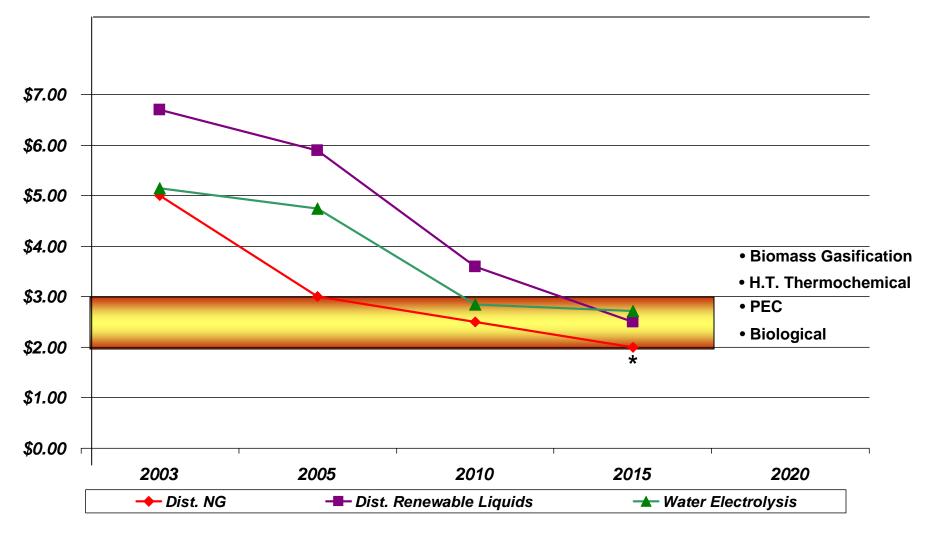
H2 Cost (\$ / gge)

=

(EIA Projected Gasoline Price in 2015) Fuel Economy H2FCV Fuel Economy Competitive Vehicle

Input	Value	Source
Gasoline price projection	\$1.26 / gal	EIA Annual Energy Outlook, 2005
for 2015	(untaxed, 2005 \$)	
Ratio of FCV fuel economy	2.40	NRC H2 Economy Report
to evolved gasoline ICE		
Ratio of FCV fuel economy	1.66	NRC H2 Economy Report
to gasoline hybrid		

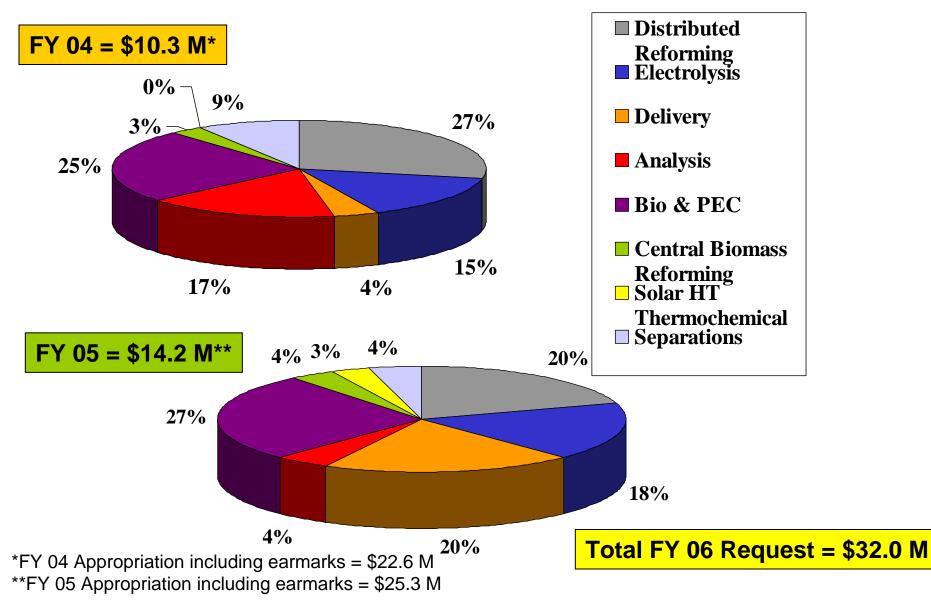
Results


• \$ 2.00 - \$3.00 / gge*

¹ Ratio of FCV fuel economy to competitive vehicle

^{*} Actual calculated values are \$2.09 and \$3.02 / gge

Hydrogen Production Targets Compared to 2015 Cost Goal



* Pending final approval by DOE Change Control Board

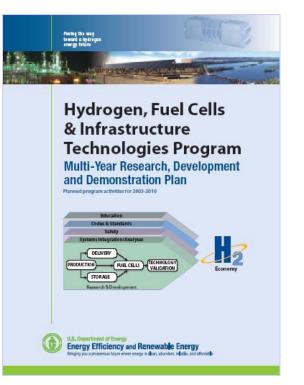
Hydrogen Production & Delivery Funding Distribution

R & D Plan

New goals and targets

- Distributed renewable liquid reforming
- Water electrolysis from central renewables
- Separations technologies: dense metallic and microporous
- Biomass (gasification/pyrolysis) reforming
- Photosynthetic bacteria and dark fermentation

Detailed target guidance


- Capital equipment targets separate from operations and maintenance
- Total system energy efficiency
- Specific capacity utilization factors

Developed R & D targets based on common set of

economic parameters

• 10% IRR after taxes, 100% equity financing, 1.9% inflation, 38.9% tax rate, 7 year depreciation

<u>http://www.eere.energy.gov/hydrogenanfuelcells/mypp/</u>[°]

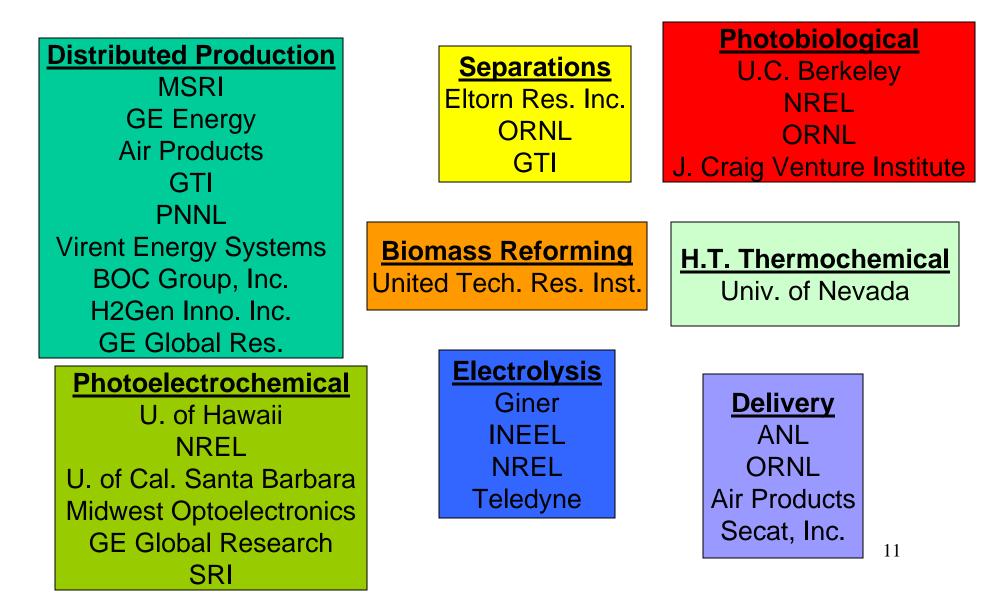
Key Milestones

FY 2008

- Go/No-go: Determine if membrane separation technology can be applied to natural gas distributed reforming during the transition to a hydrogen economy.
- Down-select to a primary technology and configuration for central biomass gasification/pyrolysis clean–up, reforming, shift, separations and purification.

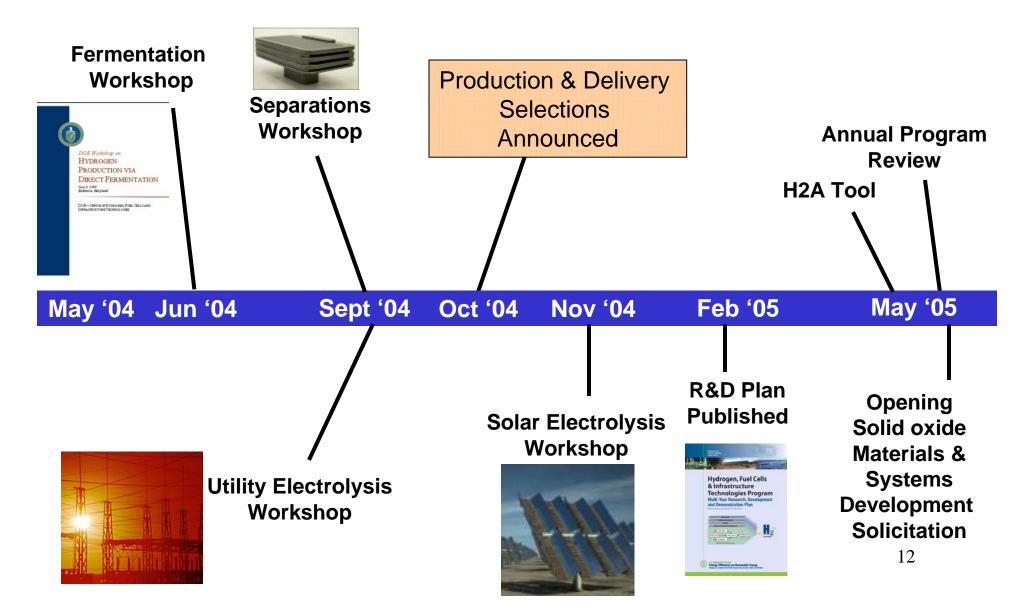
FY 2009

 Complete development of integrated "appliance" type distributed reforming system applying DFMA principles.


<u>FY 2010</u>

- Go/No-Go: Identify costeffective transparent H2impermeable materials for use in photobiological and photoelectrochemical systems.
- Go/No-Go: Verify the feasibility of an effective integrated hightemperature solar-driven thermochemical cycle for hydrogen projected to meet the 2010 cost goal of \$6/gge (\$4/gge delivered by 2015).

2004 & 2005 DOE Hydrogen Production & Delivery Projects *(*



Hydrogen Production R&D – Planning and Implementing

Recent Technical Accomplishments

Natural Gas Distributed

Reforming

 Approaching R & D target of \$3/gge for distributed natural gas reforming at 5000 psi.

GE High-Pressure Autothermal Cyclic Reforming (ACR) Reactor

Teledyne HP TITAN[™] HP generator

Electrolysis

- Achieved 2000 psi H2 production in planar electrolysis stack
- Developed new system designs with 40-50% part count reduction
- Novel stack design for alkaline system on track for achieving a hydrogen production cost of \$2.85/gge by 2010.

Recent Technical Accomplishments

Biological

- Increased photobiological efficiency of absorbed sunlight energy to ~15% (5% in 2003)
- 40-50% increase in oxygen tolerance achieved

Measuring photosynthetic productivity of micro-algae (NREL)

Lab scale testing of semiconductors (NREL)

Photoelectrochemical

- Projected 1000 hours durability with new gallium phosphide nitride material for photoelectrochemical based on accelerated testing
- Integrated photovoltaic electrolysis panel ready for prototype testing

Recent Technical Accomplishments

Biomass gasifier/pyrolyzer PDU (NREL)

<u>Biomass</u>

Gasification/Pyrolysis

 Developed biomass reforming catalyst to reduce coking and attrition

Solar HT Thermochemical

- Demonstrated lab feasibility of zinc and maganese cycles
- Selected 4 groups of cycles
 - Volatile metal
 - Metal oxide
 - Sulfate
 - Sulfuric acid

Solar HT Thermochemcial reactor (NREL)

Delivery State of the Art

- Today hydrogen is transported by cryogenic liquid trucks and gaseous tube trailers. There is also a very limited transmission pipeline infrastructure (630 miles; Gulf Coast, California, Chicago)
- Cost \$4-9/gge of H2 or more depending on distance for truck transport. Pipeline transport can be <\$1/gge.

Delivery Pathways and Components

- <u>Pathways</u>
 - Gaseous Hydrogen Delivery
 - Liquid Hydrogen Delivery
 - Carriers

Including mixed pathways

- Components

Pipelines Compression Liquefaction Liquid and Gaseous Storage Tanks Carriers & Transformations GH2 Tube Trailers Terminals Separations/Purification Dispensers Mobile Fuelers Other Forecourt Issues Cryogenic Liquid Trucks Rail, Barge, Ships

Delivery Barriers

Analysis Needs

• Infrastructure options and trade-offs for the transition and long term

Compression

Transmission and Forecourt Applications

- Reliability
- Lower capital costs
- Energy efficiency

Off-Board Storage

Forecourt, Terminals, Other

- Lower cost (lower capital cost)
- Smaller footprint (Forecourt)

Pipelines

- Hydrogen embrittlement and permeability
- Lower capital costs new materials to reduce pipeline installation costs
- Coating to allow usage of existing NG or other pipeline infrastructure or for new pipelines
- ROW
- Can we use existing NG infrastructure for mixtures if H2 and NG?

Liquefaction

- Higher energy efficiency current technology consume >30% of H2 energy
- Lower cost current technology >\$/gge of H2

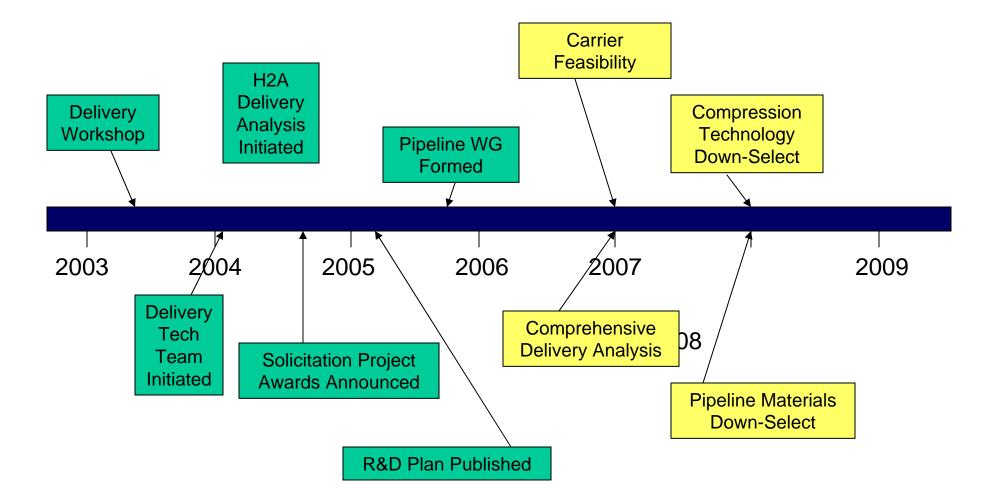
Novel Carriers

- Discovery of novel solid or liquid carriers with sufficient H2 density
- System energy efficiency and cost

Delivery Objectives

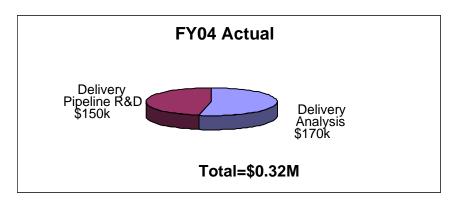
- By **2007**, define the criteria for a cost-effective and energyefficient hydrogen delivery infrastructure for the introduction and long-term use of hydrogen for transportation and stationary power.
- By 2010, develop technologies to reduce the cost of hydrogen delivery from central and semi-central production facilities to the gate of refueling stations and other end users to <\$0.90/gge of hydrogen.
- By 2010, develop technologies to reduce the cost of compression, storage, and dispensing at refueling stations and stationary power sites to less than <\$0.80/gge of hydrogen.
- By 2015, develop technologies to reduce the cost of hydrogen delivery from the point of production to the point of use in vehicles or stationary power units to <\$1.00/gge of hydroget? in total.

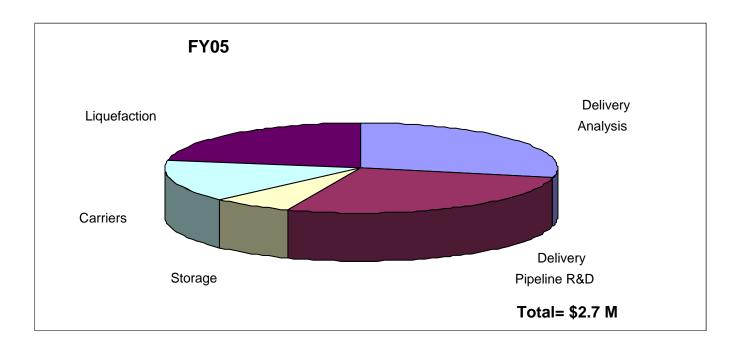
Delivery Key Targets



Targets	2003 Status	2015 Target
Transmission Pipeline Capital (\$/mile)	\$1.20	\$0.80
Forecourt Compression		
Cost Contribution (\$/gge of H2)	\$0.60	\$0.25
Reliability	Unknown	>99%
Forecourt Storage Cost Contribution (\$/gge of H2)	\$0.70	\$0.20
Carrier (weight % H2)	3%	13%

Delivery Planning and Implementation





Delivery Funding

Delivery Key Accomplishments

- Delivery Tech Team and Draft Roadmap
- R&D Multi-Year Plan
- H2A Delivery Analysis Tools

 Components and Scenarios
- Initial Portfolio of Research Projects
- Pipeline Working Group

DOE Hydrogen Production Team

ATESU	
Pete Devlin 202 586-4905 Peter.Devlin@ee.doe.gov	 Team Leader, Hydrogen Production Overall Hydrogen Production R&D Hydrogen Production Tech Team Co-Chair
Arlene Anderson 202 586-3818 Arlene.Anderson@ee.doe.gov	 Fossil Energy Coordination on Coal-Based Production Renewable liquid distributed reforming Natural Gas, Petroleum Feedstocks/Platinum Mining California Fuel Cell Partnership
Roxanne Garland 202 586-7260 Roxanne.Garland@ee.doe.gov	 Biological Photoelectrochemical
Matt Kauffman 202 586-5824 Matthew.Kauffman@ee.doe.gov	• Electrolysis
Mark Paster 202 586-2821 Mark.Paster@ee.doe.gov	High Temperature Thermochemical Biomass Hydrogen Delivery Technologies Hydrogen Delivery Tech Team Co-Chair