2005 DOE Hydrogen Program Review Sulfur-Iodine Thermochemical Cycle

> Paul Pickard Sandia National Labs May 25, 2005

This presentation does not contain any proprietary or confidential information

Project PD27

Overview

Timeline

- Start 9/2002
- Finish 9/2008
- ~ 25% complete

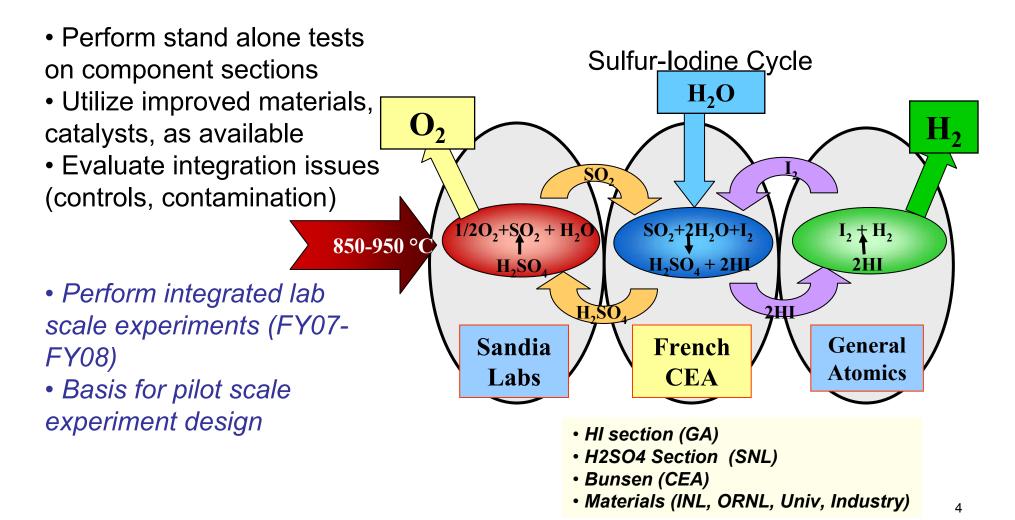
Budget

- Funding
 - DOE 4.2 M\$
 - CEA In kind
- FY04 Funding 1.4 M\$
- FY05 Funding 2.8 M\$

Barriers

- Materials high temperature, corrosive environments
- Process chemistry, thermodynamic data
- Reactor to process interface

Partners


- Process CEA, SNL, General Atomics
- Supporting Technology INL, ORNL, ANL, UNLV, MIT, UCB, Ceramatec

Sulfur Iodine Thermochemical Cycle Objectives

- Investigate the potential of the Sulfur-Iodine cycle for Hydrogen production using nuclear energy
 - Flowsheet analysis of process options
 - Design and construct lab scale experiments for the three major reaction sections of the S-I cycle
 - Lab scale experiments on H₂SO₄ and HIx decomposition, and primary (Bunsen) reaction
 - Investigate process alternatives, materials, catalysts, diagnostics, membrane applications
 - Utilize engineering materials where feasible
 - Integrate component sections and perform a closed loop experiment in final phase
 - Provide basis for pilot scale experiment design

Sulfur Iodine Thermochemical Cycle Lab Scale Experiment – Approach

- Perform flowsheet analyses of process alternatives
- Construct reaction sections using initial materials

Technical Accomplishments/ Progress/Results Summary

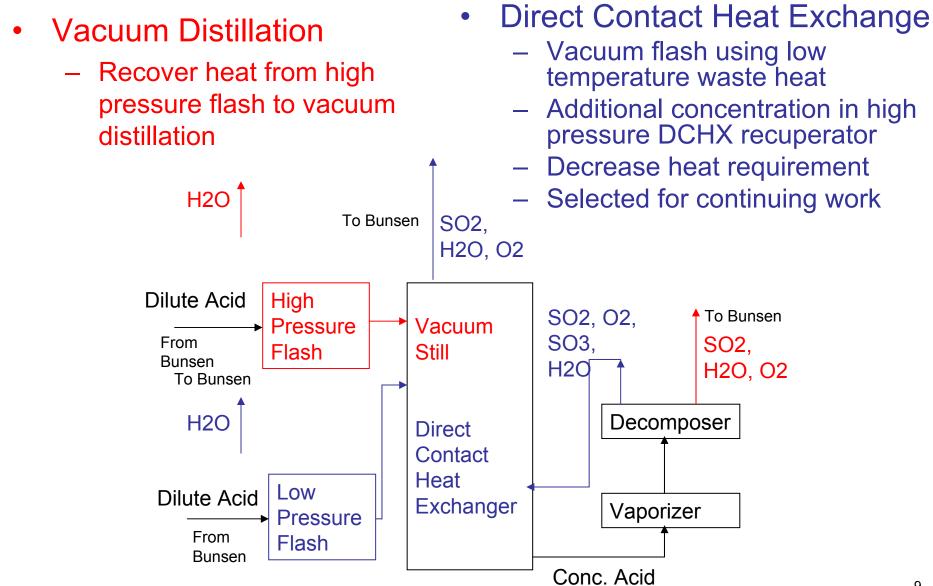
- Completed flowsheet analysis of alternate S-I configurations
- Designed and constructed test apparatus for component reactions (H₂SO₄, HIx, Bunsen)
- Experiments initiated for component reaction sections
 - H₂SO₄ decomposition section (boiler, decomposer) engineering materials (started 12/2004, 850 C at ambient pressures)
 - Reactive distillation HIx decomposition section
 - Reactive distillation (started 2/2005, >20-35 bar, 250 C, glassware in pressure vessel)
 - Extractive distillation (started 4/2005)
 - Bunsen reactor section (started 2004, glassware exps, engineering materials apparatus, scheduled 9/2005, CEA)
- Thermophysical property measurements HI/I₂/H₂O vaporliquid equilibrium measurements initiated (CEA)
- Preliminary integrated lab scale experiment designs

Flowsheet Analysis for Thermochemical Processes

- Simulate process configuration and conditions (ASPEN)
 - First step in process design, evaluation
 - Characterize process energy and stream flows (T, P, F_i)
 - Calculation of energy/heat requirements, efficiency

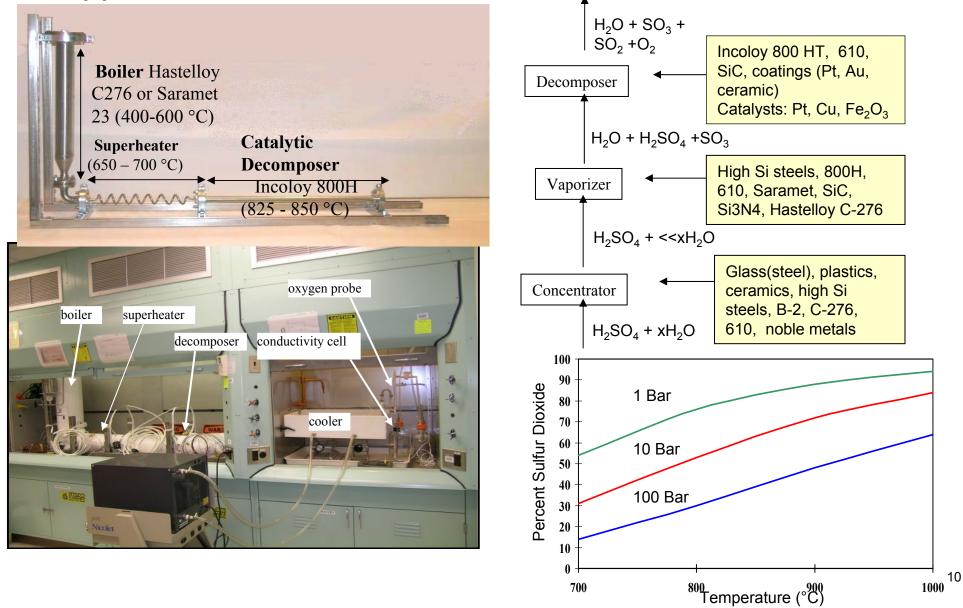
- Evaluation of process alternatives, uncertainties
 - System optimization, parameter studies
 - Some alternatives incorporated, others being evaluated experimentally
 - First step in defining component sizes and quantities -- costs

Flowsheet Options for Laboratory Scale Sulfur-Iodine Sections


Process Section	Alternative 1	Alternative 2	Selection
Section 1	Co-current Bunsen	Counter-current Bunsen	Counter-current
(Bunsen)	- Short residence time	- Fewer pieces of equipment	Bunsen
	- Efficient HX	- Fewer streams	 Less recycle, less
	 No side reactions 	 Less recycle 	complex, selected by
	- Previously demonstrated	- Not yet demonstrated	CEA
Section II	HP Flash/Vacuum Still	Direct contact HX	Direct Contact HX
(H ₂ SO ₄)	 higher concentration ~90 	- Direct contact heat /mass	 Reduced heat
	mole % H ₂ SO ₄	exchange	demand
	 less efficient 	 Heat required reduced ~5 	 SO₃ recovery
		to 10%	
		- Eliminates vacuum still	
Section III	Extractive distillation	Reactive Distillation	Reactive Distillation
(HIx)	- Use H_3PO_4 or HBr to extract	- Less equipment, fewer	- Experiment baseline
	water	streams	
	- Vapor recompression (heat	- More recycle	H ₃ PO ₄ Extractive
	pumps) required for H ₃ PO ₄	 heat pumps required 	distillation
	- HBr too costly under	- Not demonstrated	 Backup process
	optimistic assumptions	- Similar heat and energy	
	 Basic H₃PO₄ steps 	requirements	
	demonstrated		

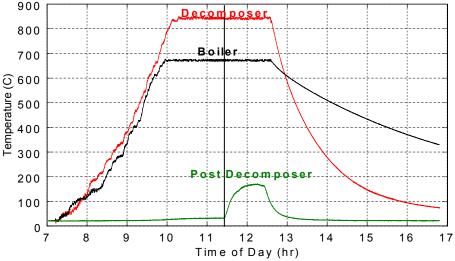
Sulfuric Acid Section

1. $2H_2O(I) + SO_2(g) + I_2(I) \rightarrow H_2SO_4(I) + 2HI(I)$	120 C
2a. H_2SO_4 (I) \rightarrow H_2O (g) + SO_3 (g)	~500 C
2b. $SO_3(g) \rightarrow SO_2(g) + 1/2O_2(g)$	~850 C
3. 2HI (g) \rightarrow I2 (I) + H2 (g)	~400 C


- Concentrate dilute acid from Bunsen reaction (1), decompose to SO₃, and SO₂ and O₂. SO₂ and H₂O input to Bunsen. Accounts for most of the thermal input requirement
- Key Issues
 - High temperature process heat exchanger(s)
 - Materials corrosion, temperature, catalyst activity
 - Energy efficiency recuperation
- Options
 - Vacuum distillation
 - Direct contact HX more heat efficient, eliminates vacuum still
- Sequence / approach
 - Construct initial section from best estimate materials, catalysts
 - Develop diagnostics, refine design, materials,
 - longer term materials and ceramic component development

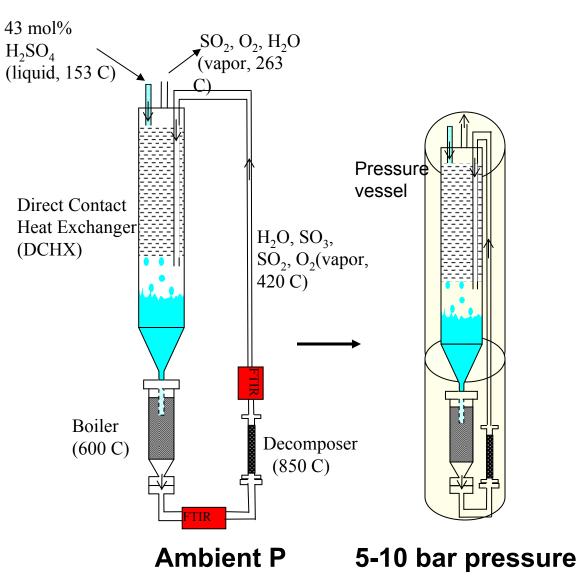
H2SO4 Decomposition Section Alternatives

Sulfuric Acid Section -- Status


• Completed construction of modular acid decomposition apparatus (Saramet boiler, Hastelloy C276 (heater), Incoloy 800H decomp.

Sulfuric Acid Section -- Status

- Completed two acid tests at 850 C (ambient pressure)
- Limited corrosion in vapor phase and cold liquid sections
- Significant corrosion in boiling, condensing sections, qualitatively more severe than estimated static vs flow, SO2
- severe than estimated static vs flow, SO2
 Boiler (ceramic bed) temperature increased to limit corrosion, straight-through configuration



Species	Corrosion Products	Incoloy 800H	Saramet 23	Hast. C276
Cr	10 g/L	21%	18%	16%
Ni	8.0 g/L	32%	17%	57%
Fe	6.6 g/L	40%	55%	5%
Si	0.042 g/L	<5%	5%	<0.08%
Мо	0.26 g/L		0.06%	16%
Au	0.0000046	0	0	0

Sulfuric Acid Section – Testing Sequence

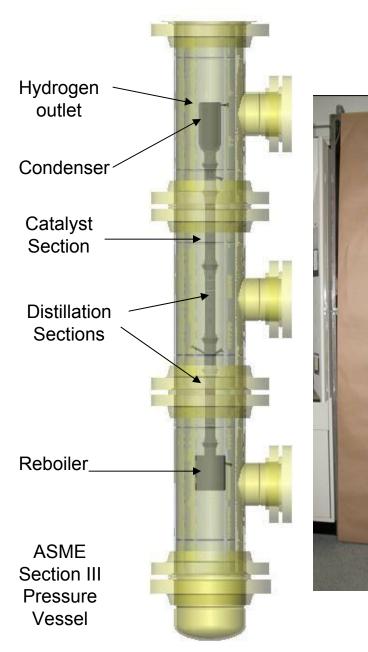
- 1.- Direct contact heat exchange (DCHX), glass DCHX, FTIR development
- 2.- DCHX ambient pressure with concentrator
- 3. DCHX, improved components (ceramics)
- 4. Pressurized DCHX apparatus

Section 3 – HI Decomposition

- Lower phase of Bunsen reaction is a mixture of HI I2 H2O. This Section separates HI and decomposes it into H2 and I2
- Key Issues
 - Reactive distillation process chemistry
 - Uncertainty in HI/I2/H20 vapor equilibrium data
 - High recycle water volumes
 - Materials corrosion, catalysts
- Options
 - Reactive (baseline), Extractive (backup)
- Sequence / approach
 - Evaluate both approaches experimentally, construct initial sections in glassware in pressure vessel (~20-40 bar)
 - Selection May 2005
 - Construct selected section based on best available materials, modify as improved materials tested

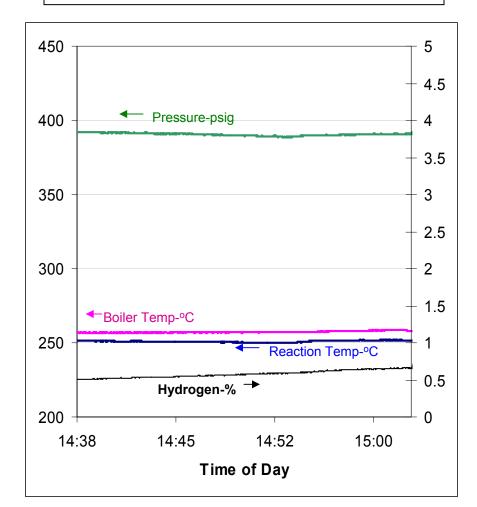
Extractive Distillation

- Process steps demonstrated, not as integrated process
- Extractant rate and concentration limits not established

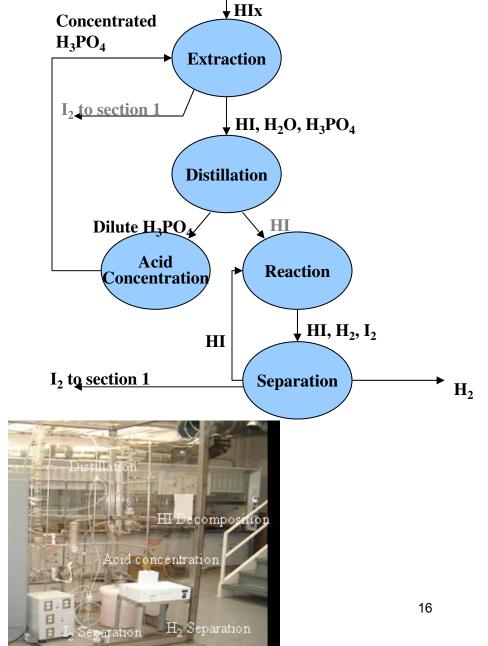

Reactive Distillation

- Not demonstrated, reactivity of HI under req'd conditions unknown
- Catalyst performance must be determined rate, deactivation
- Thermophysical data needed

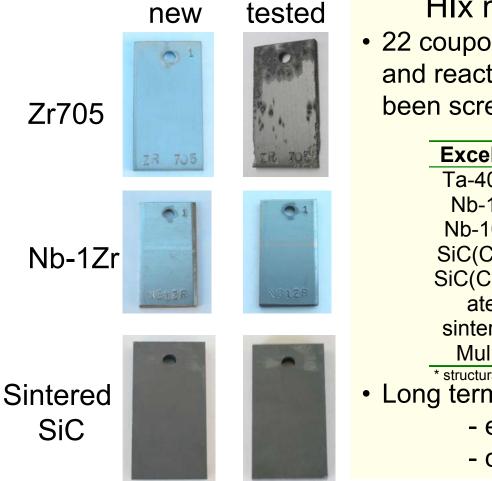
Initial Reactive Distillation Experiments are in Glass/Metal System


- Process operates at 300-600 psi, 250-300°C
- Distillation separates HI/H_2O from I_2
- HI decomposes on catalyst
- Reflux from condenser (HI/H₂O) washes I₂ from catalyst
- Metallic pressure vessel rated at 625 psig
- Commercial glass distillation column is inexpensive
- Activated carbon catalyst under test
- Hydrogen measured continuously

Reactive Distillation Results to Date


- Pressure balance system for glass equipment in pressure vessel works well
- Initial HI decomposition experiments begun
 - Focus on reaction kinetics
 - Additional run time required for catalyst life evaluation
- Hydrogen production has been demonstrated
- Lower than expected H₂ production is likely due to slow kinetics and poor catalyst performance

Operating conditions and H₂ production


Extractive Distillation Experiments Initial Experiments Done in Glass System

- Process operates at ambient pressure and 120-450°C
- HI/H₂O absorbs into the phosphoric acid
- A separate, heavy I₂ phase is formed and returned to the Bunsen reaction
- H_3PO_4 breaks the HI/H₂O azeotrope to allow separation of HI from H₂O and H₃PO₄
- Pure HI is decomposed to H₂ and I₂ in a carbon catalyst bed
 - Status
 - Flowsheet simulations completed and used for design of components
 - Apparatus assembled and testing started
 - April start, support May 15 decision on method for Lab scale exps.

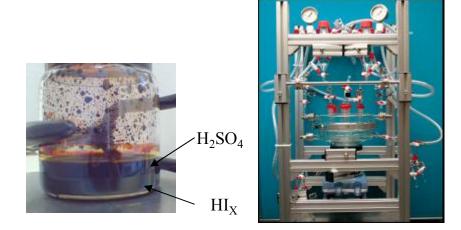
Materials Testing for HIx Section

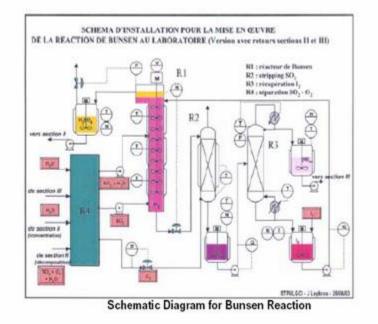
Refractory metals and ceramics have shown the best corrosion performance to date

HIx materials testing (UNLV and GA)
22 coupons from four classes of materials: refractory and reactive metals, superalloys and ceramics, have been screened.

Excellent	Good	Fair	Poor		
Ta-40Nb,	Та, Та-	Mo-47Re,	Mo, C-276,		
Nb-1Zr,	10W, Nb,	Alumina	Haynes		
Nb-10Hf,	Nb-7.5Ta,		188,		
SiC(CVD),	SiC		graphite*,		
SiC(Ceram	(sintered)		Žr702,		
atec	Si-SiC		Zr705		
sintered),	(3 kinds)				
Mullite					
* structurally sound but absorbed HIx					

Long term corrosion performance testing has started


- effect of HI_xon stress corrosion
- cost reduction through cladding


Bunsen Reaction Section (CEA)

- Bunsen reaction (formation of the two acids in aqueous phases) in optimal conditions for S-I process
- Key Issues
 - Thermal management in reaction column (S formation)
 - Recycle volumes from HI section
 - Thermophysical data uncertain (HI/I2/H2O -VLE)
 - Materials corrosion
- Options
 - Co-current (demonstrated), Counter-current (simpler hardware, thermal mgt TBD)
- Sequence / approach
 - Construct glass reactor to determine elemental concentrations in liquid phases
 - Preliminary design of Bunsen section completed
 - First corrosion tests done.

Bunsen Reaction Section - Status

- Initial Bunsen section exps
- Elemental measurements for determination of total amount of H+ ions, sulphur and iodine in each phase
- Corrosion tests performed to select appropriate materials
- Preliminary design of Bunsen section
- Complete flowsheet analysis of Bunsen, HIx section options
- Complete construction of counter-current reactor – 9/05

Supporting Technology Activities

- Materials high temperature corrosion and mechanical properties – metals, ceramics (UNLV, GA, MIT, ORNL)
- High temperature systems interface innovative heat exchanger designs, analysis (UNLV, UCB, Ceramatech)
- Membranes high temperature inorganic membranes for acid decomposition (ORNL)
- SO₃ decomposition electrolysis (ANL)
- Membranes for water separation (INL)
- Acid decomposition catalysts (INL)

Sulfur Iodine Thermochemical Cycle Planned Activities (FY05-FY08)

- FY05 Complete component reaction section preparations and initial testing
 - Complete acid decomposer ambient pressure tests, construct high pressure apparatus
 - Select HIx distillation method for lab scale tests, construct HIx section
 - Complete Bunsen reactor construction
- FY06 Complete testing of three stand alone sections in preparation for integrated lab scale experiments
- FY07 Assemble component sections, initiate closed loop testing
- FY08 Perform S-I Hydrogen test program in integrated lab-scale apparatus

Publications and Presentations Sulfur Iodine Thermochemical Cycle

Presentations

- NHI Semiannual Reviews (September 2004, March 2005)
- UNLVRF High Temperature Heat Exchanger Program Quarterly reviews

Publications

- Bunsen Wong, et.al., "Construction Material Development in Sulfur-Iodine Thermochemical Water-Splitting Process for Hydrogen Production," AIChE Spring Meeting, April 2005, Atlanta
- Benjamin E. Russ, et.al., "HI Decomposition- A Comparison of Reactive and Extractive Distillation Techniques for the Sulfur-Iodine Process," AIChE Spring Meeting, April 2005, Atlanta
- Paul M. Mathias, Lloyd C. Brown, "Quantitative Analysis of the Sulfur-Iodine Cycle Through Process Simulation," AIChE Spring Meeting, April 2005, Atlanta
- Paul M. Mathias, Lloyd C. Brown, "Phase Equilibria and Thermodynamic Properties of the Sulfur-Iodine Cycle," AIChE Spring Meeting, April 2005, Atlanta
- Bunsen Wong, et.al., "Construction Material Development in Sulfur-Iodine Thermochemical Water-Splitting Process for Hydrogen Production," AIChE Spring Meeting, April 2005, Atlanta
- "Metallurgical and Corrosion Characterization of Structural Materials for the National Hydrogen Initiative", Ajit Roy, Radhakrishnan Santhanakrishnan, Ancila Kaiparambil, Bunsen Wong, Gottfried Besenbruch, Lloyd Brown Materials Science & Technology 2005, Symposium: Materials for the Hydrogen Economy, Sep. 25-28, 2005, Pittsburgh, PA
- Fred Gelbard and Paul Pickard, "Lab-Scale Catalytic Decomposition of Sulfuric Acid with Scalable Materials," AIChE Spring Meeting, April 2005, Atlanta
- Dion Rivera and M. Kathleen Alam, "In Situ Monitoring of Sulfuric Acid decomposition by Fourier Transform Infrared (FT-IR) Spectroscopy in the Sulfur Iodine Thermochemical Reaction for the Production of Hydrogen," Pittcon Analytical Conference, Feb. 28 - Mar. 4 2005, Orlando, Florida

Other Reports

- Bunsen Wong, Lloyd C. Brown, Robert Buckingham, Gottfried Besenbruch, Gary Polansky, and Paul Pickard, "Engineering Materials Requirements Assessment for the SI Thermochemical Cycle," GA-A24902/SAND2004-681, February 2005.
- Lloyd Brown, Bob Buckingham, Ben Russ, Gottfried Besenbruch, Fred Gelbard, Paul Pickard, Jean-Marc Borgard, "Design of the Integrated Lab-Scale Experiment for the Sulfur-Iodine Thermochemical Cycle," INERI Report, September 30, 2004

Hydrogen Safety

What is the most significant hydrogen hazard associated with this project?

- The most significant hydrogen hazard is associated with a hydrogen explosion from the HI decomposition experiments.
- This could happen if hydrogen accumulates in large quantities in the equipment or the exhaust system and an ignition source is present.

Hydrogen Safety

What are you doing to deal with this hazard?

- Work is governed by General Atomics corporate safety program
- Requires development and approval of a Hazardous Work Authorization (HWA) before any experimental work can be initiated.
- Approval is given by independent Safety Committee, after detailed review of the HWA document.
- HWA details hazards and mitigation techniques. (Requirements include applicable Government and industry regulations).
 - Equipment designed to minimize the free hydrogen volume
 - Work performed in inerted environment.
 - Providing for air and Nitrogen dilution of hydrogen exhaust ports to keep the hydrogen concentration well below the explosive limit.
 - Equipment designed to eliminate potential ignition sources
 - Burst disc installed that vents into the chemical scrubber