Alternative Thermochemical Cycle Evaluation

Michele Lewis Argonne National Laboratory May 23-26, 2005

This presentation does not contain any proprietary information

Argonne National Laboratory

PD29

A

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Time Line

- Start date: 10/04
- End date: 9/05
- % complete: 40%

Barriers

- Unknown thermodynamic data
- Unknown chemistry

Budget

- FY 05 = \$150K
- Complementary program supported by internal LDRD funds

Partners

- INERI with CEA
- INERI with AECL
- Primarily information exchange

- Review candidate alternative thermochemical cycles, characterize potential advantages and disadvantages
- Report Candidate Alternative Cycles for NHI Flowsheet Analysis (2-1-05)
- Report Alternative Thermochemical Cycles for Nuclear Hydrogen Production (9-1-05)
 - Use updated assessments and downselect the most promising

 Support two International Nuclear Energy Research Initiative (INERI) projects:

- Thermochemical Hydrogen Production Process Analysis (CEA)
 - Collaborate on developing a standard, consistent methodology for quantifying cycle efficiency
 - Evaluate the S-I and an alternative cycle
- Lower-Temperature Thermochemical Hydrogen Production (AECL)
 - Collaborate on assessing the use of lower-temperature cycles with nuclear reactor options
 - Candu SCWR has an outlet temperature of 625C

Approach

Identify potentially promising cycles (2-1-05)

- Review literature, NE-R&D Plan, EERE programs, R&D at national labs and foreign research labs such as CEA
- Determine benchmarks for assessing potential
 - Reported idealized efficiencies
 - Reported evaluations of chemical viability
- Coordinate process for downselecting most promising cycles
 - Perform scoping flowsheet analysis
 - Identify critical R&D needs for selected cycles
- Select most promising cycles from updated assessments (9-1-05)

Definition

- Review articles that contain lists of cycles:
 - Yalcin, Baumberger, Williams, Beghi (Ispra)

Individual papers within various journals:

- International Journal of Hydrogen Energy
- Hydrogen Energy
- Hydrogen Energy Progress
- Alternate Energy Sources
- More obscure journal articles by authors of interest

Literature Sources, Cont.

• Two great summary reports available:

- GRI-80/0023.1 by McCarty, et al.
 - Funded by The Gas Supply Research Division of the Gas Research Institute from 1972-1980
 - Contains efficiency and summary of experimental results
 - 11 of 131 cycles selected as promising
- Solar Thermochemical Hydrogen Generation Report (STHGR) (to be published)
 - Sponsored by DOE-EERE (Paster)
 - Contains a summary of 200+ cycles with efficiency for selected cycles
 - 14 of 200+ cycles selected as promising

Promising cycles from summary reports

GRI's Cycles

- Hybrid Cu-SO₄ (1100K)
- Hybrid Cu-SO₄ (1363K)
- Hybrid Zn-SO₄ (1150K)
- Hybrid Cu-Cl (805K)
- Hybrid Cd (1500K)
- Cr-Cl (1475-1525K)
- Fe-Cl (875-975K)
- Fe-Cl (1175-1275)
- NH₃-CO₃-Hg (875-975K)

STHGR's Cycles

- Cd-SO₄ (1475K)
- BaMo-SO₄ (1275K)
- Mn-SO₄ (1275K)
- Hybrid Cu-Cl (825K)
- Hybrid Cd (1475K)
- Cd-CO₃ (1475K)
- Multivalent sulfur (1845K)
- Zn (2475K)
- NiMnFe (1075K)
- ZnMnFe (1475K)
- NaMn-3 (1735K)
- ?

Results: Rationale for Selection

- Identify cycles with high idealized efficiency in both GRI and STHGR reports
- Eliminate cycles with maximum temperatures incompatible with the VTGR (<1150 K)
 - Fe-Cl (875-975K)
 - NH₃-CO₃-Hg (875-975K)
 - Hybrid Cu-Cl (805K)
 - Hybrid Cu-SO₄ (1100K)
 - Hybrid Zn-SO₄ (1150K)
 - NiMnFe (1075K)

Results: Rationale for Selection-Cont.

Assess chemical viability

- Proof of principle work, if available
- General chemical knowledge
 - GRI provides useful experimental data for some cycles
- Cycles with Se, Hg, and Cd eliminated based on release rates for RICA metals

Results of literature search: 4 Cycles Selected

- Hybrid metal sulfate, 'proven' chemistry:
 - Cu: idealized efficiency of 69-73% (HHV); T_{max} = 1100 K
 - Zn: <u>idealized</u> efficiency of 55-61% (HHV); $T_{max} = 1150 \text{ K}$
- Hybrid Cu-Cl, 'proven' chemistry:
 - <u>Idealized</u> efficiency = 49% (HHV); T_{max} = 805 K
- Hybrid K-Bi cycle; general chemical knowledge:
 - <u>Idealized</u> efficiency = 57% (HHV); T_{max} = 850 K

Untapped sources

- Universities
- Foreign institutions, companies such as GE, other national labs

Ongoing work is considered proprietary

- This presents a challenge in identification and assessment
- Still open to new cycles
 - Questions remain on Fe-Cl and on NiMnFe

Definitions

$$E = -\frac{\Delta H^{\circ}(H_2 O(g)(25^{\circ}\text{C}))}{\Sigma Q}$$

- Efficiency (LHV) with work inputs
 - - △H° (H2O(g)) = 57.8kcal/mol
 - $\Sigma Q = \Sigma q_i + \Sigma W_i / \eta$
 - W = the sum of the work inputs
 - η = efficiency of converting heat to electricity
- Electrochemical work from Faraday's law, $\Delta G = nFE$
- Energy for shaft work is based on typical engineering assumptions

A Caution on Reported Efficiencies

 Idealized efficiencies reported by various authors appear to use different assumptions

	Efficiency from GRI (HHV)	Efficiency from STHGR (HHV)		
Fe-Cl	47 – 49%	20%		
Hy-S	41.5 – 49.2%	51%		

A Caution on Reported Efficiencies-Cont.

- Unknown thermodynamic data
 - No thermodynamic available for Cu₂Cl₂O
 - Incomplete thermodynamic data for HI-I₂-H₂O ternary
- Inconsistencies in various thermodynamic databases
- Unknown assumptions in idealized efficiency calculations
- Unknowns in assessing chemical viability
 - Yields, kinetics, separations, separation techniques, and amount of water in cycle
 - Water removal is energy intensive
 - Viability of reverse Deacon reaction-Cl₂ + H₂O =2HCl(g) + $\frac{1}{2}O_2$

Kinetics vs. thermodynamics

 Realizable thermodynamics: necessary but not sufficient

	3.50E-06									
Partial Pressure, torr	3.00E-06 -		-	γ	Letter	and the second second second				
	2.50E-06 -	1		-	all group and a second		─● Hydroge ── HCl	rogen		
	2.00E-06 -					Ĺ				
	1.50E-06 -									
	1.00E-06 -	25°C	450°C	\sim						
	5.00E-07 -			1						
	0.00E+00	•	*	<u> </u>	1					
	C)	1	2	3	4	5	6		
					Time, h					

Temp., C	(∆G), kcal/mol		
25	-11.8		
425	-0.5		

 Kinetics trumps thermo at 25C

Ongoing Work - FY2005

 Perform scoping flowsheet analyses on promising alternative cycles

- Make assumptions transparent
 - Unknown thermodynamic data specified and estimation method clearly defined
- Use Excel format for new users (if possible)
- Compare with other reported analyses
- Develop critical guidelines for assessing chemical viability and identify most critical R&D needs for 4 cycles selected and provide guidance for new cycles
- Identify 'best' alternative cycles

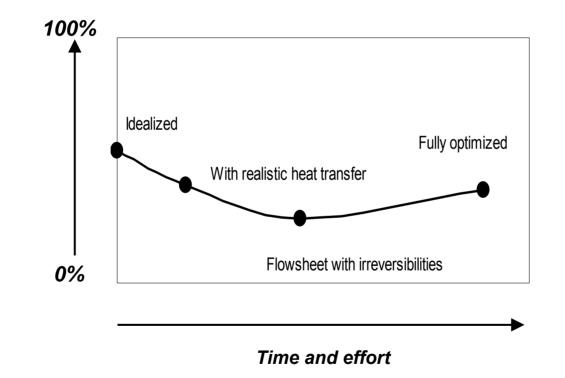
Possible guidelines for assessing chemical viability

- When proof of principle is absent
- Check spontaneity (\(\triangle G\)) of reactions
 - Check Δ G for each reaction: < ± 10-15 kcal/mol
 - ΔG > -15 kcal/mol implies a very stable product
 - $\Delta G < +15$ kcal/mol implies a reaction that does not go
- Check abundance and cost
 - Cycles with Hg, Se, and Cd eliminated on the basis of EPA release rates for RCRA wastes; Ag cycles, on cost basis
- Check number of elements and reactions
 - No more than 2 other than O, and H
 - Relatively small number of reactions; how to define?

ANL-CEA Collaboration

Objectives of ANL-CEA INERI

- Develop a standard method for assessing thermochemical hydrogen production cycle efficiencies
- Use methodology to compare leading technologies


Information exchange meeting

- ANL meeting on Feb. 3 and 4, 2005, with Pascal Anziew, Jean-Marc Borgard, and Philippe Carles of CEA
- Agreed on general approach and noted that efficiency values change with knowledge of cycle
 - CEA to define various levels of knowledge in cycle development

High idealized efficiencies are necessary but not sufficient for assessment

Graph from CEA (Pascal Anziew)

Future Work: ANL/CEA Collaboration

- Critical review of the NHI scoping methodology
- Define levels of cycle development and appropriate methodologies for calculating efficiency
 - Different methods required for different levels of chemical and engineering knowledge

Define common parameters for simulations

- Engineering parameters
- Guidelines for common unit operations for all thermochemical cycles
- Joint authorship of several proposed papers

Future Work: ANL/CEA Collaborations

- Quantify Go/No-Go Criteria (part of chemical viability assessment)
 - Consider cost/availability of raw materials at required level of purity
 - Assess environmental impact based on probable release rates
 - Determine impact of competing reactions
 - Determine consensus on maximum number of elements and maximum number of reactions

Energy usage optimization

- Balance process heat needs with heat source
- Determine impact of transients
- Determine effect of cogeneration

Future Work-ANL/AECL Collaborations

- Collaborate on assessing the use of lowertemperature cycles with nuclear reactor options
- With funding
 - Development of electrochemical cell for hybrid Cu-Cl cycle
 - An integrated demonstration by 2007
 - An economic assessment

- Selected 4 cycles as promising alternative cycles for nuclear hydrogen production but still open
- Ongoing work includes scoping flowsheet analysis and identification of critical R&D needs
 - Identify the most challenging reaction in a cycle
 - Measurement of thermodynamic data, kinetic studies, proof of principle for reactions with high ∆G, determination of amount of water, or challenges in electrochemical cell configuration such as electrode material, catalysts, etc.
- Select most promising alternative cycles by 9-05

