Autothermal Cyclic Reforming Based Hydrogen Generating & Dispensing System

Ravi Kumar GE Global Research

23rd May 2005

This presentation does not contain any proprietary or confidential information

imagination at work

Project ID # PD3

Overview

Timeline

- Start Jan 2002
- Finish Dec 2005
- 85% Complete

- Total project funding
 - DOE \$2,382K
 - Contractor \$1,812K
- Funding received in FY04
 - \$650K
- Funding for FY05
 - \$650K
- Funding reduced Fabrication & operation of H2 compressor, storage & dispenser removed from scope

Barriers

- Barriers
 - > A. Fuel Processor Capital Costs
 - > B. Fuel Processor Manufacturing
 - > C. Operation & Maintenance
 - > E. CO₂ Emissions
 - > F. Control & Safety
 - > L. Durability
 - > M. Impurities
- Targets production & dispensing

	2003	2005	2010
Efficiency (LHV)	65	65	75

Partners

- Praxair Purifier
- University of California at Irvine Host Site

Objectives

Overall	 Design a generating & refueling system that can meet the DOE cost target of <\$3.00/gge
	 Fabricate and operate an integrated 60 kg of H₂/day generating system
2004	 <u>High-pressure</u> reformer & pressure swing adsorber (PSA)
	– Design
	 Fabrication & Installation
	 Compression, storage & dispensing system
	– Design
2005	Permitting
	 <u>High-pressure</u> reformer & PSA
	 Integration & Operation
	Update economic analysis

Technical Approach

Reformer	Minimize capital cost
	 Design for 1000s of cold start cycles
	 Modeling of advanced control systems for stabilizing temperature and flows
	 Catalyst durability – thermal/RedOx cycles
	Increase methane conversion
Shift	Increase CO conversion
Pressure Swing	 Impurities – CO, Sulfur
Adsorber	 >75% recovery of Hydrogen
Safety &	Gas Sensors – Lower Explosive Limit (LEL)
Permitting	Seismic zone 4 classifications
	Class I Div II explosion proof electrical

Autothermal Cyclic Reforming Process

High Pressure ACR Reactor Design Meets the Performance Targets

CTQ	Targets	Current Status (modeling)
ASME: Outer shell temperature	< 400°C	~ 300°C
Cold start cycles to failure	> 1,000	12,984
Reforming cycles	> 2E+6	5.8E+7
CH ₄ slip	< 10%	< 5%
Heat loss from the reactor	< 5 kW	3.4 kW

3D Modeling

- Thermal
- Mechanical Stresses
- Reactions

6 / GE / 26-Apr-05

Developed Dynamic Cascade Control Algorithms for Stabilizing the Process

Model Results at High Pressure

7 / GE / 26-Apr-05

Reformer and PSA - Fabrication Status

- Next generation high pressure reformer and H₂ purifier fabricated and installed at University of California at Irvine
- Upgraded to ASME stamped pressure vessels & class I div II electrical

H₂ Compression & Dispensing System

Design completed -Praxair

10 / GE / 26-Apr-05

Hydrogen Compressor Skid Design

Ventilation system prevents the accumulation of H₂

Hydrogen Storage – Elevated Design Strategy

- Leaks will quickly rise and dissipate.
- Out of the line of sight
- Design completed

Discussed Area Classification w/ Fire Marshal Only 3' around reformer & PSA is Class I Div II

Safety Case Studies

- Rupture of all vessels and room blower is off
 - >Will reach 10% of Lower Flammability Limit (LFL)
- Sensors shut down system, if
 - >20% LFL is reached
 >Room blower is off

Permitting

- Fire Marshal
 - > Hired 4 professional engineers certified by State of California – mechanical, electrical, structural, chemical
 - > Best practices from National Fire Protection Agency (NPFA) 50A, 52 & 497
 - > 99% complete
- Campus Architect (Completed)
- South Coast Air Quality Management District (Completed)

Responses to Previous Year Reviewer's Comments

- High pressure reforming vs. low pressure reforming with compression decision
 - Compressing natural gas vs. compressing syngas is more efficient and more cost effective
- Current lifetime of catalyst is 3 months
 - Designed reactor to replace catalyst in a day
- Performance goal and detailed operation plan needs to be worked out
 - Developed advanced controls and tested them in the process model
 - Low pressure reformer was stable for extended periods of time during experimental runs

Technical Approach for 2005

Safety	• HAZOP – UCI, Praxair & GE
	 Independent peer review
Reformer process	 Cascade dynamic control algorithm being optimized in a model
control	 Monitor temperature, pressure & flows
	 Methane conversion
Reformer	Thermal cycles
catalyst durability	 Reduction/Oxidation cycles
H ₂ impurities	CO & Sulfur
System	 Load changes – 20 to 60 kg/day
Optimization	 Optimize efficiency
	Optimize startup times

Remaining Project Tasks -Completion by Dec 2005

	Task Name									
		2nd (Quarte	r	3rd Q	uarter		4th Q	uarter	
		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	Optimize dynamic process control model									
2	Fire marshal approval									
3	Fabrication - electrical/structural			h.						
4	Shakedown				L					
5	Operation of reformer+shift									
6	Integration & operation of PSA									
7	System optimization									
8	Update cost models									
9	Final report									

Supplemental Slides

Publications and Presentations

- Patent # 6,878,362 Issued to GE
- Patent # 6,792,981 Issued to Praxair
- World Hydrogen Energy Conference, Yokohama, Japan - June 27th – July 2nd 2004

Hydrogen Safety

- H₂, CO and natural gas leaks electrical spark
- Pressure vessel rupture
- Piping rupture
- Earthquakes
- Structural failures
- Over-pressurization or high temperatures

Hydrogen Safety

H ₂ , CO and natural gas leaks	 Class I Div II electrical Intrinsically safe electrical barriers Lower explosive limit (LEL) sensors
	CO sensors
	 Emergency egress lights
	Alarm to 24 hr monitoring station
	 Electrical shunt trips
Pressure vessel rupture	 ASME stamped vessels
	 Design structural supports to seismic zone 4 specifications
Piping rupture	ANSI B31.3 codes
Over-pressurization or high temperatures	 Pressure and temperature switches

Ackowledgements

- Department of Energy
 - > Arlene Anderson, Mark Paster, Peter Devlin and Sig Gronich
- California Energy Commission
 - > Avtar Bining and Art Soinski
- California Air Resources Board
 - > Steve Church

