

Development of Dense Ceramic Membranes for Hydrogen Separation*

U. (Balu) Balachandran

May 25, 2005

This presentation does not contain any proprietary or confidential information

*Work supported by U.S. DOE, Office of Fossil Energy, National Energy Technology Laboratory.

Argonne National Laboratory

PDP-14

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Overview

Timeline

- This is ongoing DOE Lab work funded by Fossil Energy on an annual basis.
- Started FY 1998.

Barriers to "Separations and Other Cross-Cutting H₂ Production"

- (L) Hydrogen Transport Membrane (HTM) will be durable at high temp./pressure.
- (M) HTM is stable in steam, CO, CO₂, CH₄, and H₂S.
- (O) Selectivity is infinite.
- (Q) HTMs give industrially significant flux.
- (S) Cermet HTM reduces membrane cost.

Budget

- Total Funding: \$3350K (DOE)
- FY 2004 Funding: \$400K
- FY2005 Funding: \$550K

Partner

NETL - National Energy Technology Laboratory

Objectives

Develop dense ceramic membranes for separating hydrogen from mixed gases at commercially significant fluxes under industrially relevant operating conditions. Product streams from coal gasification and methane reforming are of particular interest. Membrane must:

- have low cost
- have high selectivity for H₂
- give industrially significant flux
- withstand high pressure and temperature
- be chemically stable in presence of steam, CO, CO₂,
 CH₄, H₂S, etc.

Approach

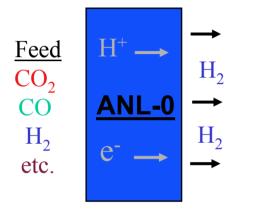
Our three-pronged approach aims to develop:

- Pure mixed proton-electron conductors e.g., acceptordoped cerates and zirconates
- Cermets (i.e., ceramic-metal composites) that contain mixed conductors and a metal that enhances the membrane's ambipolar conductivity and flux
- Cermets composed of mechanically durable ceramic and a metal/alloy with high hydrogen permeability

Approach - Continued

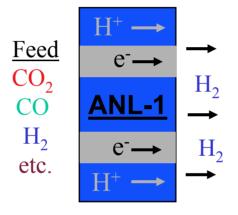
- Select/fabricate candidate materials based on fundamental principles of defect chemistry and mass transport.
- Measure hydrogen flux of candidate material versus temperature.
- If flux is high, test short-term (≈100 h) chemical stability in gases containing H₂S, CO, CO₂, H₂O, etc.
- If membrane seems chemically stable, measure mechanical properties (fracture strength, creep).
- Measure hydrogen flux at high pressures (NETL).
- Optimize fabrication methods to reduce membrane thickness and maximize flux.
- Test long-term (≈1000 h) chemical stability in simulated coal gasification atmospheres.
- Under guidance from NETL program managers, transfer membrane technology through industrial collaborations.

Advantages of Dense Cermet Membranes for Hydrogen Separation

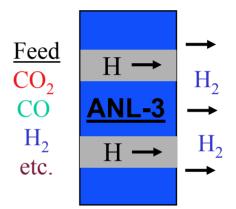

- Selectivity is theoretically infinite.
- Flux rates >200 cm³/min-cm² (400 scfh/ft²) are attainable under "real-world" pressure conditions.
 - flux >30 cm³/min-cm² (60 scfh/ft²) already shown at ambient P
- Commercial, well-proven ceramic processing is used.
 - device will be economical
- Will accept high-temperature and high-pressure gas streams
 - suitable for FutureGen plants
- No pore plugging/closure
- Tolerates steam, CO, CO₂, CH₄, and H₂S
- Supplies CO₂ stream at high temperatures and pressures
 - important for carbon sequestration
- Can enhance equilibrium product conversion

ANL's Approach to HTM Development (U.S. Patent 6,569,226, May 27, 2003)

Single-Phase Mixed Conductor



$$J_{H_2} = \frac{RT}{4F^2l} \cdot \sigma_{amb} \cdot \ln \frac{p_{H_2}^{I}}{p_{H_2}^{I}}$$


$$\sigma_{amb} = \frac{\sigma_{H^{+}} \bullet \sigma_{e^{-}}}{\sigma_{H^{+}} + \sigma_{e^{-}}}$$

- Low σ_{e}
- Low Flux
- Poor Mechanical Integrity

Mixed Conductor With Metal

Structural Ceramic With Hydrogen Transport Metal

Feed
$$H/e^- \rightarrow H_2$$
CO H_2
etc. $H^+ \rightarrow H_2$
 $H/e^- \rightarrow H_2$
 $H \rightarrow H_2$

$$J_{H_2} = \frac{A\Phi}{l} \left(\sqrt{p_{H_2}^{feed}} - \sqrt{p_{H_2}^{sweep}} \right)$$

- High Flux
- High Selectivity
- Good Mechanical Integrity

ANL Membrane Compositions

Membrane	Matrix	Metal
ANL-0	ВСҮ	
ANL-1a	ВСҮ	Ni
ANL-1c	TZ-8Y	Ni
ANL-2a	ВСҮ	Pd
ANL-2b	СМО	Pd/Ag(23 wt.%)
ANL-3a	Al ₂ O ₃	Pd
ANL-3b	BaTiO ₃	Pd/Ag(23 wt.%)
ANL-3c	Al ₂ O ₃	Nb
ANL-3d	Al ₂ O ₃	Pd/Ag(23 wt.%)
ANL-3e	TZ-3Y	Pd
ANL-3f	TZ-8Y	Pd
ANL-3g	CaZrO ₃	Pd
ANL-4a	Cu	Nb

ANL Membranes (HTMs)

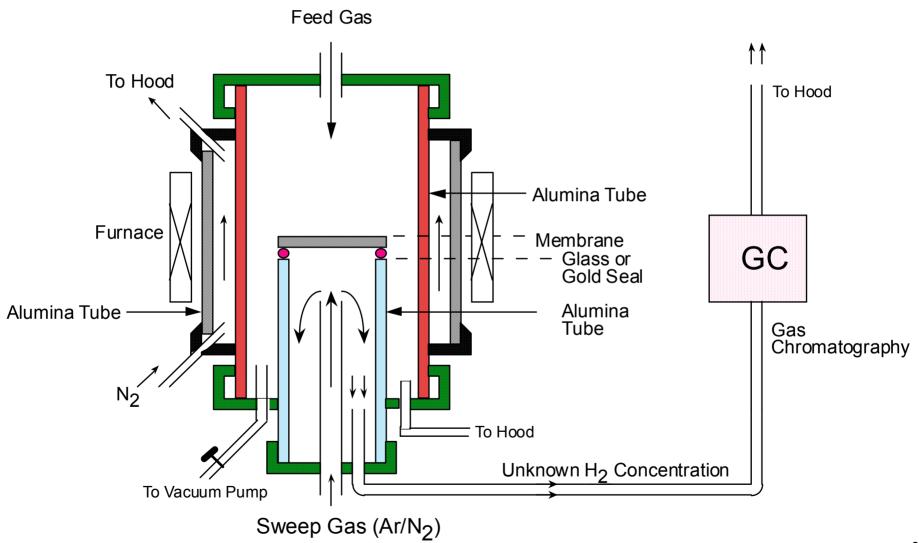
ANL-0: Mixed conductor (e.g., BCY)

ANL-1: Mixed conductor + metal with low H₂ permeability (e.g., Ni)

ANL-2: Mixed conductor + metal with high H₂ permeability (e.g., Pd, alloys, etc.)

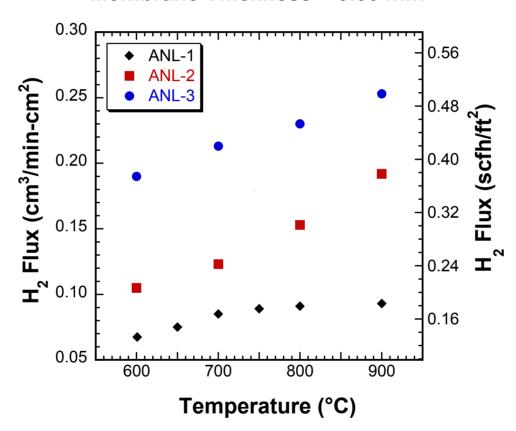
ANL-3: Structural ceramic (e.g., Al₂O₃) + metal with high H₂ permeability (e.g., Pd, alloys, etc.)

ANL-4: Ductile metal + metal with high H₂ permeability (e.g., Pd, alloys, etc.)


Notes:

BCY = BaCe_{0.8}Y_{0.2}O<sub>3-
$$\partial$$</sub>
CMO = Ce_{1-x}M_xO_{2- ∂} (M: Gd, Y)
TZ-3Y = ZrO₂ (3 mol.% Y₂O₃)
TZ-8Y = ZrO₂ (8 mol.% Y₂O₃)

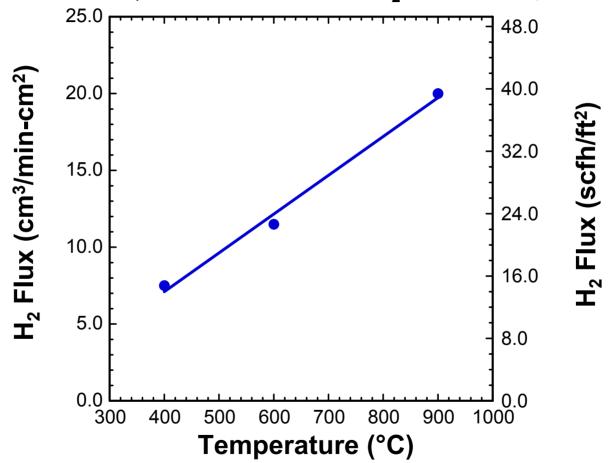
Schematic of Experimental Setup



Comparison of Cermet Membranes

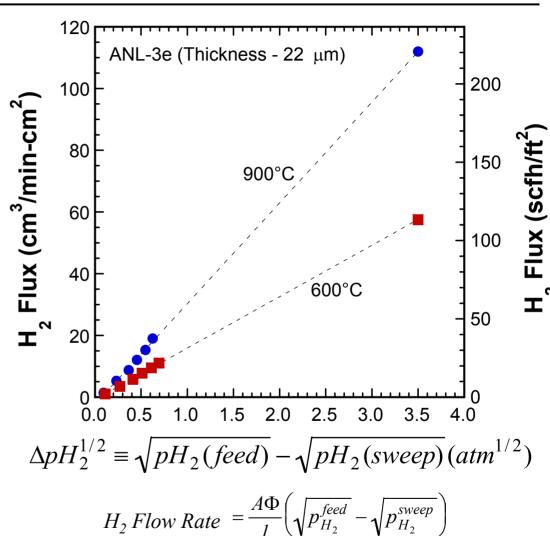
Feed Gas: 4% H₂ in Ar @ Ambient Pressure

Membrane Thickness = 0.50 mm


• ANL-3 HTMs give highest H₂ flux of ANL membranes.

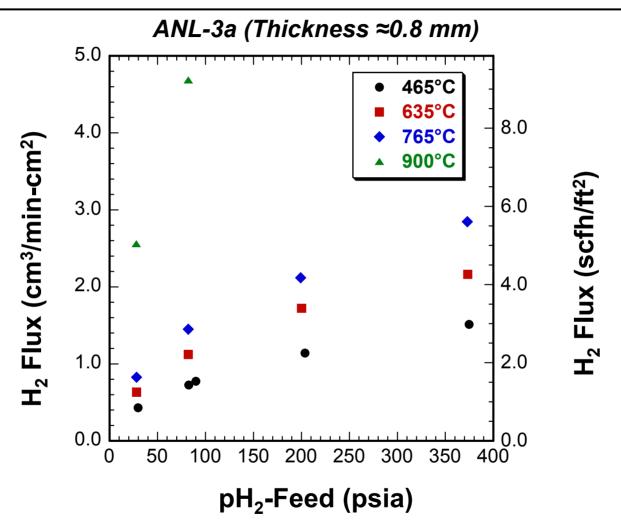
H₂ Flux (ANL-3a) vs. Temperature

Thickness ≈ 40 μm, Feed Gas: 100% H₂ at ambient pressure


ANL-3a gives highest flux of self-supported HTMs.

H_2 Flux vs. $\Delta pH_2^{1/2}$

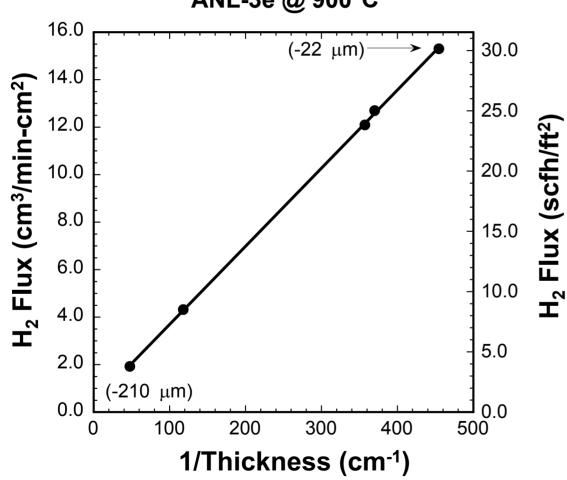
- Linear dependence of H₂ flux on $\Delta pH_2^{1/2}$ shows flux is limited by bulk diffusion.
- Extrapolation shows stand-alone ANL-3e HTM should yield H₂ flux >200 scfh/ft² at 900°C with feed gas at ≈300 psi.



$$H_2$$
 Flow Rate $=\frac{A\Phi}{l}\left(\sqrt{p_{H_2}^{feed}}-\sqrt{p_{H_2}^{sweep}}\right)$

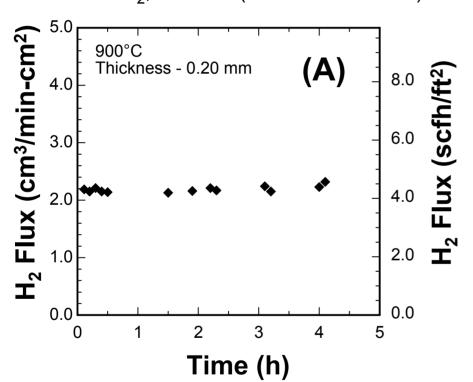
H₂ Flux at High Feed Gas Pressures

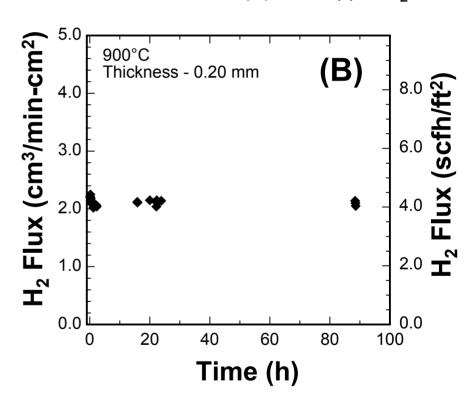
Measured flux values agree with extrapolated values.



H₂ Flux vs. Inverse HTM Thickness

Feed Gas: 80% H₂/He at Ambient Pressure ANL-3e @ 900°C


• Flux data indicate that reducing HTM thickness should increase H₂ flux.

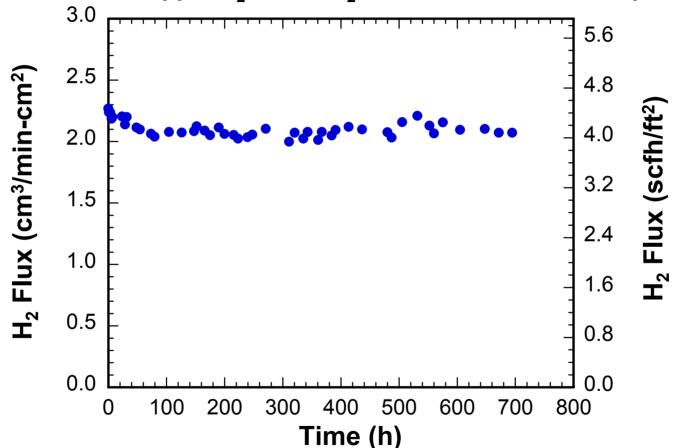


Chemical Stability of ANL-3 Membranes

Feed Gas: 61.3% H₂, 8.2% CH₄, 11.5% CO, 9.0% CO₂, 10% He (Ambient Pressure)

Feed Gas: Same as (A) + 100 ppm H₂S

• ANL-3 membranes are chemically stable in CO, CO₂, CH₄ and H₂S.

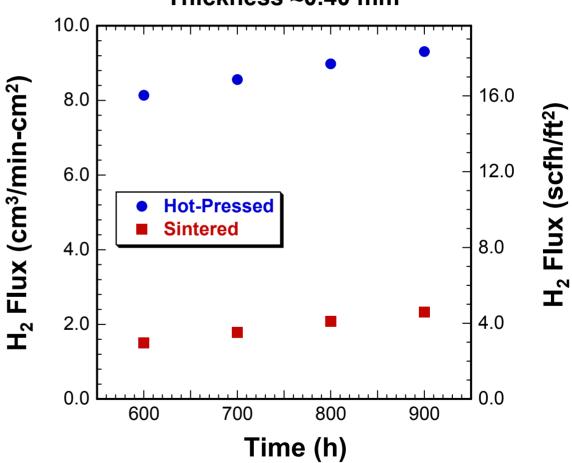


Chemical Stability of ANL-3 Membrane

ANL-3e (Thickness ≈ 0.20 mm)

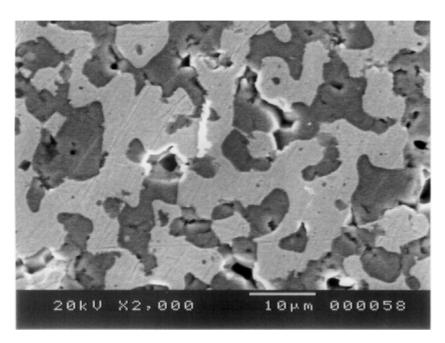
Feed Gas: 400 ppm H₂S, 73% H₂, Balance He at ambient pressure

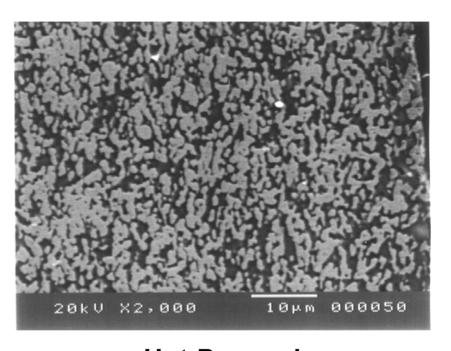
• ANL-3 HTM appears to be stable in 400 ppm H₂S.



H₂ Flux Values of Conventionally Sintered and Hot-Pressed ANL-3a Membranes

Feed Gas: 80% H₂/Balance N₂ at ambient pressure Thickness ≈0.40 mm

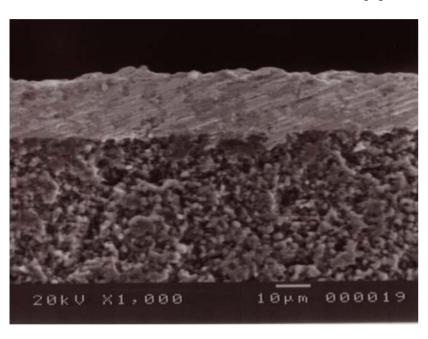

- Flux depends on microstructure.
- Hot-pressing gives higher flux.

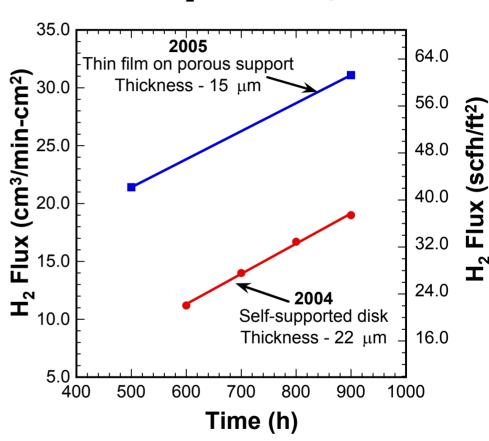


Microstructures of Conventionally Sintered and Hot-Pressed ANL-3a Membranes

Conventionally Sintered 1500°C/10 h/air

Hot-Pressed 1250°C/25 min/N₂

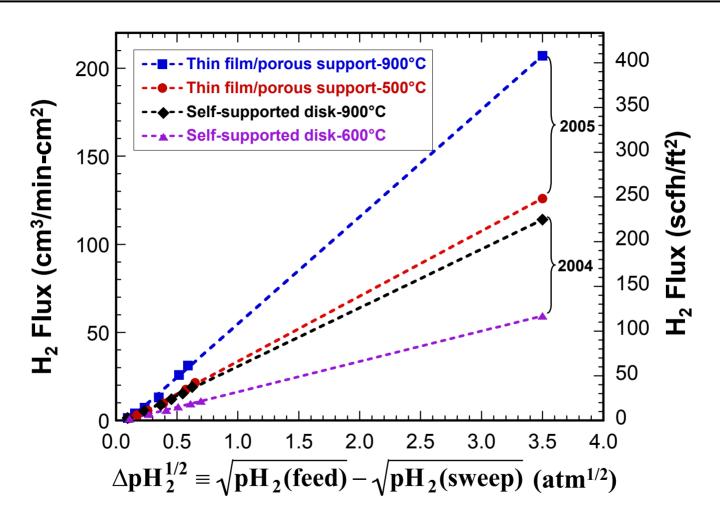

 Hot-pressing gives much finer microstructure due to shorter processing time at lower temperature.



Improvements in H₂ Flux (2004 vs. 2005)

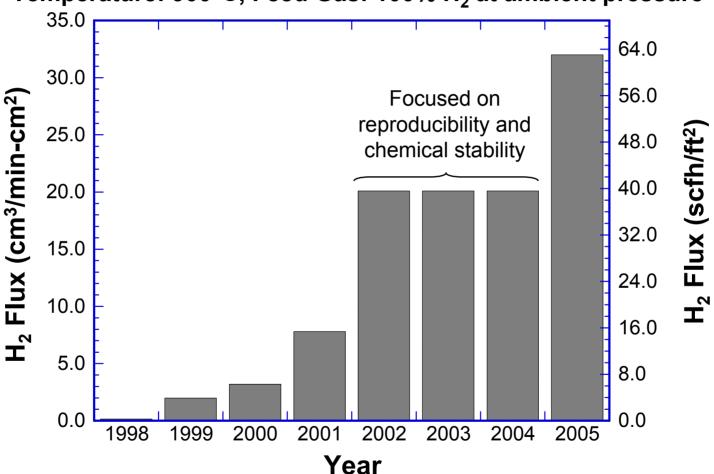
ANL-3e Thin Film on Porous Support

Feed: 100% H₂ at ambient pressure



Thin film HTM gives significantly higher flux.

H_2 Flux (ANL-3e) vs. $\triangle pH_2^{1/2}$


• Flux >400 scfh/ft² can be achieved at feed pH₂ ≈300 psi.

Progress in Membrane Development at ANL

Temperature: 900°C, Feed Gas: 100% H₂ at ambient pressure

• HTM development has shown steady progress.

FE Reviewers' Comments

- FY 1999: Increase flux to >1 cm³/min-cm² (2 scfh/ft²).
 - Increased flux of ANL-2a HTM to >2 cm³/min-cm² (4 scfh/ft²).
- FY 2000-2001: Enhance performance of mixed conductors.
 - Studied doping and surface modifications to increase flux.
 - Studied chemical stability in CO₂-containing atmospheres.
- FY 2002: Increase flux to >10 cm³/min-cm² (20 scfh/ft²).
 - Increased flux of ANL-3a HTM to ≈20 cm³/min-cm² (40 scfh/ft²) at 900°C.
- FY 2003-2004: Study chemical stability of membrane.
 - Studied effects of CO, CO₂, CH₄, and H₂S on HTM performance.
 - Showed ANL-3e is stable for >700 h in 400 ppm H₂S at 900°C.
- FY 2005: Reduce operating temperature to 500°C.
 - Increased flux of ANL-3e to ≈20 cm³/min-cm² @ 500°C.

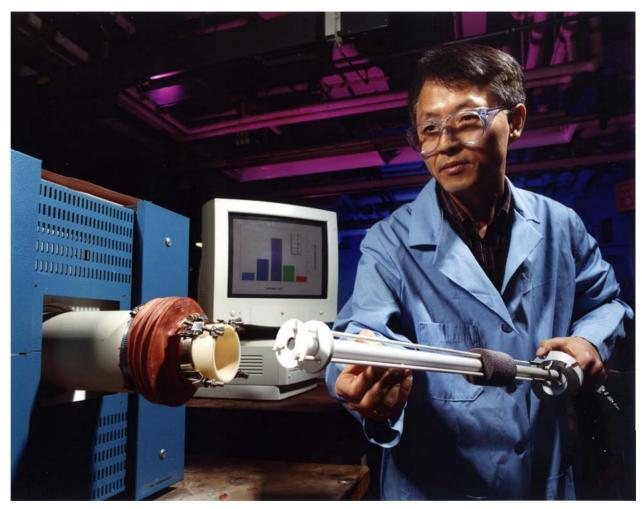
Future Work

- Test long-term chemical stability of selected HTMs in atmospheres typical of coal gasifiers.
- Evaluate HTM microstucture before and after long-term tests in coal-gasifier-type atmospheres.
- Continue fabricating/testing thinner HTMs to maximize hydrogen flux.
- Evaluate HTM mechanical properties (fracture strength, creep) before and after exposure to hydrogen.
- Continue developing new HTMs to reduce cost, increase flux, and improve mechanical/chemical stability.
- Transfer membrane technology through industrial collaborations.

Summary

- Developed dual-phase dense membranes that nongalvanically separate hydrogen.
- Flux is proportional to the difference in the square-root of hydrogen partial pressure on two sides of membrane.
- Highest H₂ flux (≈66 scfh/ft² at 900°C and ≈42 scfh/ft² at 500°C) was measured on ≈15-µm-thick HTM using feed of 1 atm H₂.
- Flux >400 scfh/ft² can be achieved with hydrogen partial pressure ≈300 psi in feed gas.
- Short-term measurements showed stable flux in feed streams that contained CO, CO₂, CH₄, H₂O, and H₂S.
- Flux was stable for ≈700 h in feed stream with 400 ppm H₂S.

Supplemental Slides



R&D 100 Award in 2004

• Argonne's HTM was recognized as one of 2004's 100 "most significant technological developments."

Contributors

ANL

Steve Dorris
Tae Lee
Jack Picciolo
Ling Chen
Sun-Ju Song
Chendong Zuo
Mark Mika

NETL Richard Killmeyer Mike Ciocco

Hydrogen Safety - Hazards

- The most significant hydrogen hazard associated with this project is the potential for fire and/or explosion resulting from the release of hydrogen into the ambient atmosphere.
- Release of hydrogen from the reactor is the most serious hazard, because hydrogen in the reactor is at high temperature and/or pressure.
- Hydrogen flame can be especially hazardous to personnel in vicinity, because it is invisible.

Hydrogen Safety - Hazard Mitigation

- The approach to deal with a potential release of hydrogen to the atmosphere is:
 - Structural
 - Sensors detect hazardous H₂ concentrations.
 - Vented gas cabinets shut down H₂ flow if H₂ concentration or H₂ flow exceeds safe levels.
 - Reactor has secondary containment purged by N₂.
 - Procedural
 - Establish standard operating procedures.
 - Perform safety review of equipment/procedures.
 - Permit work only by authorized personnel.

