

2005 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Annual Program Review

Ion Transport Membranes for Hydrogen Separation

Tim Armstrong, E. Andrew Payzant, and Scott Speakman Oak Ridge National Laboratory

May 25, 2005, Philadelphia, PA

Project ID# PDP21

This presentation does not contain any proprietary or confidential information.

Project Overview

A number of oxide systems, including perovskites, pyrochlores, brownmillerites, and fluorites, have been investigated to identify an intermediate temperature proton conductor for hydrogen separation

A new class of proton conductors stable at temperatures below 550°C has been discovered

Project Objective

➤To develop a practical high temperature proton transport membrane where high conductivity and stability are the primary requirements.

Proton Transport Membrane Development

2004-2005	2005-06	2007
Phase I	Phase II	Phase III
1 2, 3, 4	<mark>56</mark> 7	8

• Phase I: Proof-of-concept

- 1 Complete tests to determine viability of Pyrochlore/Perovskite materials (completed)
- 2 Complete tests to determine viability novel low-temperature material (completed)
- 3 Complete tests to determine viability of fluorite proton conductors (completed)
- 4 Down select to one structural family (completed)

• Development and Testing

- 5 Optimize flux, composition, and mechanical properties (in progress)
- 6 Asymmetric membrane development on metallic supports
- 7 Complete optimization of asymmetric membranes
- Phase II: Optimization, Scale up and Tech Transfer 8 – Complete scale up and transition to industry

Budget

Budget for FY2004 was \$100k Budget for FY2005 (\$200k) was <u>eliminated</u> due to earmarks

Technical Targets

DOE Technical Barriers

- A. Fuel Processor Capital Costs
- B. Operation and Maintenance Costs
- AB. Hydrogen Separation and Purification

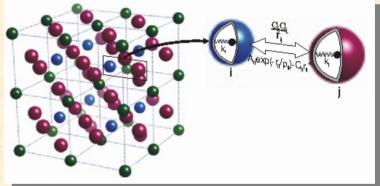
DOE Technical Targets for 2010

• Purification: 90% at \$0.03/kg Hydrogen

Technical Approach

Objective

Develop a new proton conducting ceramic membrane capable of intermediate temperature (<600°C) operation


Approach

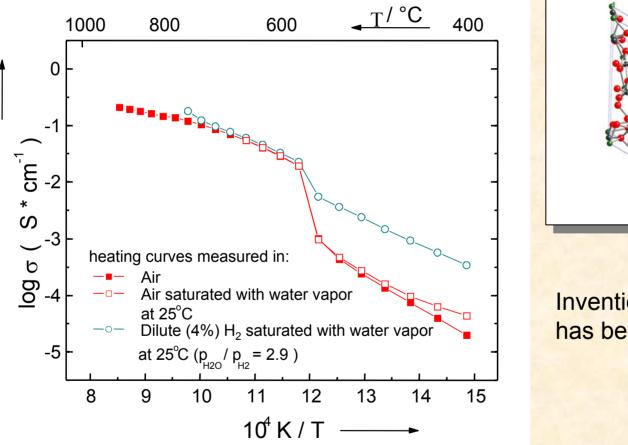
Atomistic computer simulations to identify and evaluate potential new proton conducting ceramic systems Rapid high-purity materials synthesis using a modified "combustion synthesis" process Structure and properties characterization Long-term stability testing (e.g. in reformate and syngas)

Technical Progress

- Potential proton transport materials have been identified in the pyrochlore, brownmillerite, fluorite, and related oxides
- Computer simulation with empirical potential models
 - model completed for several pyrochlore, perovskite, and brownmillerite end members. Solid solution models are in development.
- Crystal structure and phase identification studies completed for >100 samples prepared to date with more in progress
- High temperature conductivity measurements in air completed for >50 samples to date - studies in hydrogen are in progress
- Hydrogen permeance measurements initiated in summer 2004

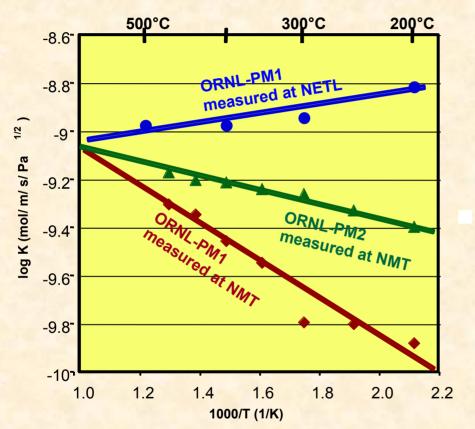
Modeling Enables Stable Phases to be Predicted Based on Calculated Lattice Energies

- Computational modeling has been utilized to predict potential proton conducting ceramic oxides in the perovskite and brownmillerite systems.
- New methodologies are being developed to evaluate a broader range of possible products to improve the accuracy of the models predictions.
- Modeling enables prediction of effects of chemical doping on structure and properties - the most promising candidates may be synthesized and tested.



Numerous Candidate Systems have been Evaluated for Proton Conduction

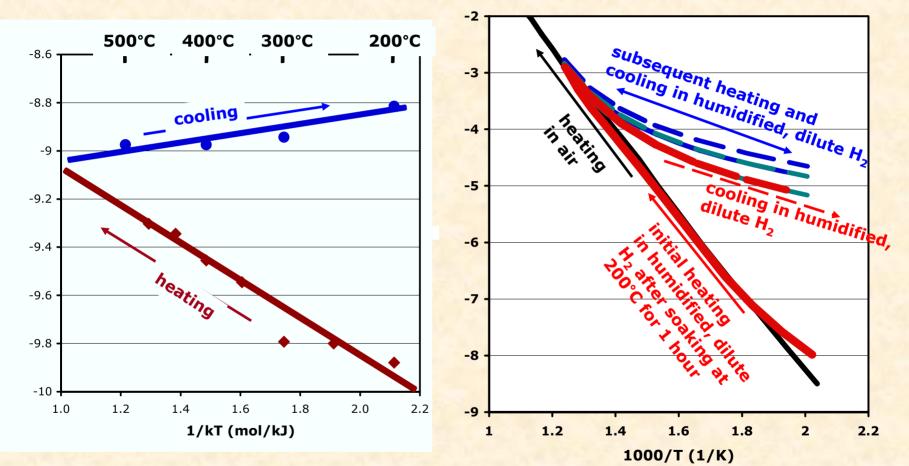
- Perovskite, Pyrochlore, and Brownmillerite sytems yielded useful mixed conductors, but no practical proton conductor
- Fluorite system yielded useful oxygen and mixed conductors but no practical proton conductors
- New oxide system identified with high proton conductivity at temperatures below 550°C


New Low-Temperature Proton Conducting Oxide has Been Discovered

Invention disclosure has been filed

UT-BATTELLE

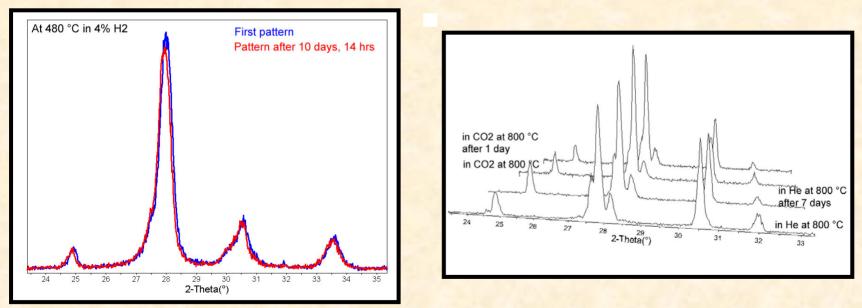
Measurements Confirm Hydrogen Flux at <550°C



NETL data collected on cooling in 3 atm humidified H_2 . NMT data collected on heating in 1 atm humidified H_2 .

- Conductivity data collected at ORNL indirectly demonstrated proton conduction
- Preliminary hydrogen permeation data collected at NETL and NMT definitively demonstrate hydrogen permeation
- Data collected on initial heating reflect hydrogen uptake subsequent cycling follows the (higher flux) cooling data

Hydrogen Permeation Data Correlate Well With Total Conductivity Data


Hydrogen permeability measurements from NETL and NMT, made at 1 atm and 3 atm $p(H_2)$.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Van der Pauw dc conductivity measurement made in 4%H₂-Ar gas mixture at ORNL.

New oxide is stable in H₂ and CO₂

- In-situ XRD demonstrated phase stability in H₂ and CO₂
 - Stable over 10 days in H₂ at 480°C
 - Stable over 2 days in CO₂ at 800°C
 - H₂S stability yet to be determined

Future Work

- Continue modeling and simulation effort to predict composition property relationships which can lead to optimized compositions
- Determine hydrogen flux as a function of temperature and pressure for candidate compositions
- Characterize long-term high-temperature stability under service conditions (H₂S, CO₂)
- Develop metallic supported asymmetric membranes using ORNL support tubes

Interactions and Collaborations

- **Rutgers University:** technical collaboration on proton conducting materials
- New Mexico Tech: independent testing of hydrogen permeance
- NETL: independent testing of hydrogen permeance
- Discussions on implementation of technology are ongoing with
 - ConocoPhillips, ChevronTexaco, Infinity Fuel Cells, Worldwide Energy and Praxair

Hydrogen Safety

- The most significant hazard associated with this project is handling of flammable hydrogen gas mixtures
- Our approach to deal with this hazard is Integrated Safety Management Pre-Planning and Work Control" (Research Hazard Analysis and Control)
 - Each work process is authorized on the basis of a Research Safety Summary (RSS) reviewed by ESH subject matter experts and approved by PI's and cognizant managers
 - The RSS is reviewed/revised yearly, or sooner if any change in the work results in a need for modification.
 - Experienced Subject Matter Experts are required for all Work Control for Hydrogen R&D
 - Periodic safety reviews of installed systems is required at ORNL

