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Overview
Timeline
> Start: 9/9/2003
> End: 9/8/2005
> Percent complete: 80%

Budget
> Total project funding: $602,816

–DOE share: $482,247
–ICCI share: $100,569
–AEP share: $20,000

> Funding received in FY04: $352,700
> Funding for FY05: $250,116



Overview (con’t)
Barriers
>High cost of coal to hydrogen

>Mature technologies employed for coal to hydrogen process –
difficult to improve and reduce cost

Targets
>Reduce cost of hydrogen by 25% compared to current coal-
based plants by 2015

(DOE Fossil Energy Hydrogen Program Plan, 6/2003)

Partners
>Dr. Jerry Lin of Arizona State University

>Dr. Eric Wachsman of University of Florida



Project Objectives

> Determine the technical and economic 
feasibility of a membrane reactor coupled 
with a coal gasifier for clean, efficient, and 
low cost production of hydrogen from coal.

> Screen and test candidate membranes 
under high temperature and high pressure 
conditions of coal gasification



Technical Concept
Hydrogen from Coal via Gasification
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coupled way or within one reactor



Potential Benefits of Membrane Reactor for 
Hydrogen Production from Coal/Biomass
> High H2 production efficiency: 

– Thermodynamic analysis and recent modeling work 
indicate over 40% improvement in H2 production 
efficiency over the current gasification technologies

> Low cost: 
– reduce/eliminate downstream processing steps

> Clean product:
– no further conditioning needed, pure hydrogen

> CO2 sequestration ready: 
– simplify CO2 capture process 

> Power co-generation: 
– utilization of non-permeable syngas



Approach

> Membrane Materials Screening and Testing
– Design and construction of a membrane permeation 

apparatus
– Testing candidate membranes at high temperatures and 

high pressures

> Conceptual Design of Membrane Reactor 
– Modeling
– Membrane gasifier configuration

> Process Evaluation and Flow Sheet Development

> Economic Evaluation for Overall H2 Production Process



Accomplishments

> Constructed and commissioned a high temperature/high 
pressure (1100oC/1000 psi) membrane permeation unit. 

> Developed fabrication techniques for making supported and 
unsupported ceramic membranes. 

> Demonstrated high hydrogen flux for proton-conducting 
perovskite membranes in the high pressure membrane 
permeation unit.

> Developed membrane gasification reactor model and confirmed 
the improved hydrogen production efficiency (30-50%).

> Began evaluation of chemical stability issues for the perovskite
materials.



GTI High Temperature/High Pressure 
Permeation Unit

•Membrane diameter:1.25”

•Max Temp: 1100oC

•Max Pressure:1000 psi
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Perovskite Identified as Leading 
Candidate Membrane Material

> Perovskite membranes evaluated:
– BaCe0.9Nd0.1O3-α (BCN)

(supported or unsupported)
– BaCe0.8Y0.2O3-α (BCY)
– SrCe1-xEuxO3-α (SCE)
– SrCe0.95Tm0.05O3-α (SCTm)

Membrane Fabrication

> Die pressing or tape casting for self supporting 
membranes

> Tape casting and lamination for supported thinner 
membranes 
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Developed Supported Ultra-Thin Membrane

Membranes prepared by 
uniaxially pressing of disk

200 micron dense layer



Hydrogen Flux Measured from High 
Pressure Permeation Unit
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Temperature Dependency of Proton-
Conducting Membranes

Activation energy    27 Kcal/mole for SCTm

12 Kcal/mole for BCN
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Proton-Conducting Membrane Shows 
Good Long Term Stability Under 
Reducing Environment

SCTm membrane with pure hydrogen at feed and nitrogen as sweep gas at 1 atm

•Temperature drifted during the testing and was lowered to the original value at 170th hour.
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Key Conclusions from Membrane 
Permeation Testing
> Several barium/strontium cerate-based perovskite 

membranes show reasonable hydrogen flux at 
gasification temperatures 

> Hydrogen flux increases with pressure (to about 4 
bar) and temperature

> The perovskite membrane can operate more than 
200 hours under a pure hydrogen feed condition 
at 1000C

> Proton conducting perovskite membranes are 
good candidate materials for gasification 
membrane reactor applications



Dense membrane of 
BCN shows stronger 
resistance to CO2
than powder form

Zr-doped barium-
cerate perovskite 
shows stronger 
resistance to CO2

Evaluation of Chemical Stability for 
Perovskite Materials

- TGA (Thermo Gravimetric Analysis) Study



Evaluation of Chemical Stability for 
Perovskite Materials

- TGA (Thermo Gravimetric Analysis) Study

Dense membrane of BCN shows stronger resistance 
to H2S than powder form



Membrane Gasification Reactor Modeling
- Matching reaction kinetics and hydrogen permeation rate
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Ambipolar Conductivity Calculated 
From Measured Hydrogen Flux
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Membrane Gasifier Dimensions 
- a conceptual design example

hydrogen

retentate

From gasification 
zone

retentate

coal feed, TPD 1000
oxygen feed, TPD 600
steam feed to gasifer, TPD 595
steam feed to shift reactor,TPD 270
coal syngas flow rates, Nm/hr 97125
temperature, C 1100
pressure, atm 60
gasifier diameter, cm 330
membrane tube diameter, cm 1.250
membrane thickness, cm 0.0025
membrane tube length, cm 900
number of membrane tubes 21300
membrae area, m2 7550
ambipolar conductivity, S/cm 0.05
gas residence time of mem., sec 8



Modeling of Membrane Gasification Reactor
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Key Conclusions from Membrane 
Reactor Modeling
> Membrane gasification reactor can improve 

hydrogen production over the conventional coal 
gasification process by 30 ~ 50% for the same 
amount of coal feed.

> Membrane reactor performance determined by
– Kinetics of reforming reaction
– Equilibrium of shift reaction (high temperature)
– Membrane hydrogen permeability 

> Catalysts needed for reforming reaction



Future Plans
Milestones for remainder of FY 2005

> Complete flowsheet simulation for hydrogen production based on 

membrane gasifier processes.  Identify one concept for addressing 

chemical stability issues of perovskite membrane. (6/30/05)

> Complete technical and economical assessment of the membrane 

gasifier technology (9/30/05)

Future Work

> Continue improving hydrogen flux
– Reduce thickness, 5- 15 micron
– Dual-phase membranes

> Permeation testing with simulated syngas

> Membrane scale-up

> Bench scale testing



Publications and Presentations

> Shain J. Doong, Estela Ong, Francis Lau, Arun C. Bose, and Ron Carty, “Direct Extraction of 

Hydrogen from Coal Using a Membrane Reactor Within a Gasifier” paper presented at 21’st 

International Pittsburgh Coal Conference, Osaka, Japan, September 2004

> Shain J. Doong, Francis Lau, Mike Roberts, and Estela Ong,  “GTI’s Solid Fuel Gasification to 

Hydrogen Program” paper presented at the 3rd Natural Gas Technology Conference, Orlando, FL, 

February, 2005  



Hydrogen Safety

The most significant hydrogen hazard associated 
with this project is:

> Hydrogen leakage

> Operation of high temperature and high pressure 
permeation unit



Hydrogen Safety
Our approach to deal with this hazard is:
> Hazard assessment

– what-if/checklists, hazard and operability studies 
(HAZOP), failure mode and effects analyses (FMEA), 
fault tree analyses, and others. 

> Risk management plan
– identify approaches and actions required to mitigate and 

minimize exposure to identified risks 

> Communication plan
– failure reporting and corrective actions, periodic revision 

of all safety plans, training, emergency response plan 
development, and safety-related reporting to the sponsor 
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