

EVermont Renewable Hydrogen Fueling System

Harold Garabedian (EVermont) Nick Borland (Northern Power Systems), Ken Dreier (Proton Energy Systems)

May 23, 2005

PDP28

This Presentation Does Not Contain Any Proprietary or Confidential Information

Overview

Timeline

- Start Date April 2004
- End Date December 2006
- 30% Complete

Barriers

- Q. Cost
- R. System Efficiency
- S. Grid Electricity Emissions
- T. Renewable Integration

Budget

- Total Project \$937K
 - 50% Cost Share
- \$ 0K Funding in FY04
- \$932K Funding in FY05
- \$ 35K Funding in FY06

Partners (Subcontractors)

- Northern Power Systems
- Proton Energy Systems

Suppliers/Site Owner

Air Products, Quantum Burlington (VT) Dept. of Public Works

Objectives

Develop Advanced PEM Electrolysis Fueling Station Technology

- Implementation of Advanced PEM Cell Stack Technology
- Implementation of Advanced Power Conversion Technology
- Emphasis on Efficiency and Low Cost
- Incorporate Renewable Wind Generated Power
- Procure a Hydrogen Fueled Vehicle for Testing up to 350 bar onboard H₂ Storage and to Validate the Station

Approach

R&D and In-house Testing

- Build and Test Full Scale Advanced PEM Electrolysis Cell Stack Hardware
- Build and Test Full Scale **Advanced** Power Electronics Hardware
- Assemble and Test Full Scale 12 kg/day PEM Electrolysis System with the Advanced Hardware
- In-house test of entire Fueling System

System Design and Engineering

- Preliminary Design for High System Efficiency, Low Cost, Renewable Energy, and Extreme Cold Temperatures in Vermont
- Final Design and Fueling Station Site Layout

Site Preparation, Installation, and Commissioning

- Site Plan, NEPA Documentation, Permitting
- Training for Safety, Operation, and Maintenance

Testing, Monitoring, and Analysis

- Measure or calculate H₂ output, power consumption, efficiency, wind turbine output, fueling characteristics, seasonal/temperature related performance
- Vehicle fill times, performance (km/kg), and maintenance requirements

Accomplishments

R&D and In-house Testing of Advanced PEM Electrolysis Cell Stack Barriers Q (Cost) and R (Efficiency) addressed

Table 3.1.8a. Technic	al Targets	: Water	Electrol	ysis ¹				
Characteristics		Units	250 kg/day Refueling Station*			Small-Scale Refueling*: 2 kg/day		
			Calendar Year			Calendar Year		
			2003 Status	2005 Target	2010 Target	2003 Status	2005 Target	2010 Target
Power Conversion	Cost ^e	\$/kg	0.38	0.28	0.08	0.32	0.21	0.12
	Energy Efficiency	96 (LHM)	95	96	98	95	96	98
Cell Stack	Cost	\$/kg	0.64	0.48	0.25	1.37	0.79	0.30
	Energy Efficiency	96 (LHV)	72	76	81	65	70	79
Balance of Plant*	Cost	\$/kg	0.13	0.13	0.07	0.21	0.14	0.10
	Energy Efficiency	96 (LHV)	98	98	98	97	97	98
Compression ⁶	Cost	\$/kg	0.47	0.32	0.16	0.34	0.21	0.09
	Energy Efficiency	96 (LHV)	90	92	95	83	90	93
Storage and Dispensing	Cost ⁶	\$/kg	0.19	0.14	0.06	0.21	0.16	0.12
	Energy Efficiency	96 (LHV)	99	99	99	99	99	99
Electricity"	Cost	\$/kg	1.90	1.80	1.60	4.10	3.30	2.80
Total	Cost ^e	\$/kg	4.70	3.80	2.50	7.40	5.30	3.80
	Energy Efficiency	96 (LHV)	60	65	73	49	58	70

- 2-4 kg H₂/day per stack
- Explicitly Addresses DOE Efficiency and Cost Targets for Electrolysis Cell Stacks
 - 8-10% Cell Stack Energy Efficiency Improvements Anticipated
- 20-30% Cell Stack Cost Reduction Anticipated
- Potentially decrease H₂ Fueling Costs by \$0.74/kg from present costs
- Testing in Progress. Test Completion Scheduled for 5/31/05

Accomplishments

R&D and In-house Testing of Advanced Power Electronics Barriers Q (Cost) and R (Efficiency) addressed

Table 3.1.8a. Technical Targets: Water Electrolysis ¹									
Characteristics		Units	250 kg/day Refueling Station*			Small-Scale Refueling*: 2 kg/day			
			Calendar Year			Calendar Year			
			2002	2005	2010	2003	2005	2010	
			Status	Target	Target	Status	1018-	Target	
Power Conversion	Cost®	\$/kg	0.38	0.28	0.08	0.32	0.21	0.12	
	Energy Efficiency	96 (LHV)	95	96	98	95	96	98	
Cell Stack	Cost	awy	0.04	0.40	V.25	1.37	0.79	0.30	
	Energy Efficiency	96 (LHV)	72	76	81	65	70	79	
Balance of Plant*	Cost	\$/kg	0.13	0.13	0.07	0.21	0.14	0.10	
	Energy Efficiency	96 (LHV)	98	98	98	97	97	98	
Compression ⁶	Cost	\$/kg	0.47	0.32	0.16	0.34	0.21	0.09	
	Energy Efficiency	96 (LHV)	90	92	95	83	90	93	
Storage and Dispensing	Cost ⁶	\$/kg	0.19	0.14	0.06	0.21	0.16	0.12	
	Energy Efficiency	96 (LHV)	99	99	99	99	99	99	
Electricity"	Cost	\$/kg	1.90	1.80	1.60	4.10	3.30	2.80	
Total	Cost ^e	\$/kg	4.70	3.80	2.50	7.40	5.30	3.80	
	Energy Efficiency	96 (LHV)	60	65	73	49	58	70	

- 4-12 kW Power Converter (2-4 kg H₂/day)
 - Explicitly Addresses DOE Efficiency and Cost Targets for Power Conversion
- 7-11% Power Conversion Energy Efficiency Improvements Anticipated
- 30-50% Power Conversion Cost Reduction Anticipated
- Potentially decrease H₂ Fueling Costs by \$0.78/kg from present costs
- Testing in Progress. Test Completion Scheduled for 4/30/05

Accomplishments

System Design and Engineering Barriers Q (Cost), R (Efficiency), S (Grid Emissions), T (Renewable Integration) addressed

Future Fueling Station Site Burlington (VT) Department of Public Works

- Completed analysis of low cost system performance using electricity rates from grid-coupled wind turbine for time-ofday pricing
- Devised high efficiency extreme cold temperature operating modes for H₂ electrolysis
- Began estimation of renewable energy credits for the Wind-electrolysis H₂ Fueling System

Fueling Station Layout Completed

No Real New Technology and Future work may be more commercial related as opposed to research

- Project now includes research and development on advanced PEM cell stacks and on advanced power electronics
- New, first-of-a-kind stand-alone test of advanced power electronics
- New, first-of-a-kind test of advanced PEM cell stacks
- Integrated testing of the advanced cell stack and power electronics hardware

FY 2005

Complete Testing of Advanced PEM Electrolysis Cell Stack Complete Testing of Advanced Power Converter Assemble and Complete In-house Tests of Complete Fueling System Site Preparation, Permitting, Installation

FY 2006

Receive H₂ Vehicle

Testing, Monitoring, and Analysis

None

Hydrogen Safety

1. The most significant potential hazard is a release of hydrogen due to loss of containment as a result of component failure.

This poses two events of about equal severity

- A. Potential for injury due to exposure of a highpressure (6250 psig) gas stream or debris
- **B.** Potential for fire upon release of hydrogen
- 2. This potential hazard is being mitigated by the following:
 - A. Siting per NFPA 55 requirements (incorporates NFPA 50A)
 - B. Hydrogen storage vessels meet the ASME Boiler Pressure Vessel Code Section VIII, Division 1 requirements (Appendix 22)
 - C. The hydrogen piping is tested per ASME B31.3 requirements
 - D. The PEM electrolyzer meets NFPA 496

continued ...

Hydrogen Safety

This potential hazard is being mitigated by the following:

- E. No unclassified electrical components (ignition source) within 15 feet of hydrogen storage (motor starters are housed in explosion proof cabinets)
- *F. Hydrogen venting per the guidelines of CGA 5.5 Hydrogen vent systems*
- G. Relief valves are appropriately sized and placed at locations where there is a potential for over pressurization. ASME approved relief valves used where mandated
- H. Predominant connection types are 'medium pressure cone & thread fittings' rated to 20,000 psig
- I. Breakaways provided for dispensing hose
- J. Dispensing hose has MAWP of 7,700 psig (530 barg) & burst pressure ratio is 6:1
- K. Emergency stops (E-stop) available for all the units along with a remote e-stop. Pressing any one e-stop shuts down the operation of entire fueling station

Hydrogen Safety

- 3. The most likely accident scenario for this project comes about from operator/driver error.
 - A. Driver inadvertently drives away with the fueling nozzle attached to vehicle
 - **B.** Driver/Operator smokes near the dispensing area during vehicle fueling
- 4. The risk associated with this potential accident will be reduced by:
 - A. Training the vehicle/fueling station operators who fuel the hydrogen-powered vehicles
 - B. Using a dispensing system with a breakaway on the fueling hose and invoking automatic shutdown should a driver inadvertently drive away with the nozzle connected to the vehicle
 - C. Requiring a security password to operate the fueling dispenser and requiring that the fueling nozzle interconnects be electronically verified before hydrogen fueling can commence
 - D. Installing 'No smoking' signs near the dispenser

