Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacteria System

Qing Xu and Hamilton O. Smith J. Craig Venter Institute

May 23, 2005

Project ID # PDP31

This presentation does not contain any proprietary or confidential information

J. Craig Venter

Overview

Timeline

- Project start: 5-01-05
- Project end: 4-30-08
- Percent complete: N/A

Budget

- Total project funding
 - \$720K (Contractor share)
 - \$2,880K (DOE share)
- Funding for FY04: \$0
- Funding for FY05: \$350K

J. Craig Venter

INSTITUTE

Barriers

- Barriers addressed
 - Barrier Z, continuity of H_2 photo-production

Partners

 Pin-Ching Maness, National Renewable Energy Laboratory

Objective

- Develop an O₂-tolerant cyanobacterial system for sustained and continuous lightdriven H₂-production from water
 - Transfer and express known O₂-tolerant hydrogenases in cyanobacteria
 - Identify novel O₂-tolerant hydrogenases from VI's ongoing sampling in international waters and transfer them into cyanobacteria

J. Craig Venter

Approach to address hydrogenase O₂-sensitivity barrier

- Problem: Cyanobacteria have the ability to split water photolytically into O₂ and H₂, but their hydrogenases are highly O₂-sensitive. In contrast, a few anoxygenic photosynthetic bacteria have O₂-tolerant H₂-evolving hydrogenases, but they can not use water as the electron donor.
- Approach: Use genetic techniques to transfer O₂tolerant H₂-evolving hydrogenases from anoxygenic bacteria into cyanobacteria

J. Craig Venter

Cyanobacterium Transformed with an O₂-tolerant [NiFe]-Hydrogenase

The overall goal is to produce a cyanobacterial recombinant to produce H_2 continuously

J. Craig Venter

Technical Approach 1.1 (Venter Institute)

 Goal: Introducing a known O₂-tolerant hydrogenase from *Thiocapsa roseopersicina* into cyanobacteria (*Synechococcus and Synechocystis*)

Purple sulfur photosynthetic bacteria Thiocapsa roseopersicina

J. Craig Venter

O₂-tolerant hydrogenase Hyd from *T. roseopersicina*

The gene locus of *T. roseopersicina* O₂-tolerant hydrogenase

Catalytic region: HydS + HydL Electron-transfer elements: Isp1 + Isp2

Purified functional hydrogenase from *T. roseopersicina* contains two subunits HydS and HydL.

J. Craig Venter

Introduction of *hyd* genes into cyanobacteria using a shuttle vector

J. Craig Venter

Construction of pEX-Tr

Technical Approach 1.2 (NREL)

 Goal: Transfer the O₂-tolerant hydrogenase from *Rubrivivax gelatinosus* CBS into the cyanobacterial hosts *Synechocystis* and *Synechococcus*

Purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS was isolated from soils in metro Denver area

J. Craig Venter

Hydrogenase from *Rubrivivax* gelatinosus Tolerates O₂

Maness et al., 2002. Applied & Environmental Microbiology, 68: 2633-2636

J. Craig Venter

Genes Encoding the *Rubrivivax* O₂-tolerant Hydrogenase are Cloned

Technical Approach 2 (Venter Institute)

- Identifying novel O₂-tolerant hydrogenases from environmental microbes and introducing them into cyanobacteria
 - Sample ocean waters, and sequence environmental samples using culture-independent shotgun sequencing approach
 - Construct environmental genomic databases
 - Build HMM models and search putative hydrogenase sequences through the databases
 - Retrieve original DNA samples or DNA library for cloning the genes of novel hydrogenases
 - Express the genes and screening for O₂-tolerant hydrogenase
 - Transfer the novel O2-tolerant hydrogenase into cyanobacteria

J. Craig Venter

Technical Accomplishments/ Progress

Sorcerer II Expedition: Ongoing International Water Sampling Project at the Venter Institute

J. Craig Venter

Technical Accomplishments/ Progress

The Sargasso Sea Sampling Project-A Pilot Study for VI's International Water Sampling Project

- Generated 1.045 billion base pairs of nonredundant sequences
- Found 1800 genomic species, including 148 new bacterial species
- Identified 1.2 million new genes, including 782 new rhodopsin-like photoreceptors

Environmental microbes have a lot of potential !

J. Craig Venter

Responses to Previous Year Reviewers' Comments

 This new project starts from May 1, 2005 and has not been reviewed previously

J. Craig Venter

Future Work

Remainder of FY2005:

- Purify O₂-tolerant hydrogenases (Milestone)
- Identify sequences of marine hydrogenases from international waters
- Identify and clone the genes of putative novel hydrogenases identified from environmental samples

• FY2006:

- Verify hydrogenase functionality in oxygen
- Determine electron mediator requirements
- Transfer and express O2-tolerant hydrogenases in cyanobacteria
- Express and characterize novel hydrogenases identified from environmental samples

J. Craig Venter

Publications and Presentations

Publications:

- Environmental Genome Shotgun Sequencing of the Sargasso Sea.

J. Craig Venter, Karin Remington, John F. Heidelberg, Aaron L. Halpern, Doug Rusch, Jonathan A. Eisen, Dongying Wu, Ian Paulsen, Karen E. Nelson, William Nelson, Derrick E. Fouts, Samuel Levy, Anthony H. Knap, Michael W. Lomas, Ken Nealson, Owen White, Jeremy Peterson, Jeff Hoffman, Rachel Parsons, Holly Baden-Tillson, Cynthia Pfannkoch, Yu-Hui Rogers, and Hamilton O. Smith. *Science* 2004 Vol.304, 66-74.

J. Craig Venter

Hydrogen Safety

- The most significant hydrogen hazard associated with this project is: 10% H₂ gas cylinder (balanced with N₂ or Ar).
 - -10% H₂ is a flammable gas.
 - It is frequently used in the Lab for keeping anaerobic environment in the anaerobic gloveboxes, and as standard H₂ gas for H₂ assays.

J. Craig Venter

Hydrogen Safety

Our approaches to deal with this hazard are:

- Strictly follow the Venter Institute's safety guidelines
- Perform H₂-related experiments in our fermentation Lab that is specially designed for hazard gases
- Install an O₂/H₂ gas detector in the Lab
- Do not mix 10% H₂ by ourselves and always order premixed H₂ gas from commercial vendors

J. Craig Venter