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Overview

• Start - Oct. 2005
• End - Sept. 2009

• Barriers addressed
– Enzyme stability/durability
– Oxygen sensitivity
– Light harvesting

• Total project funding
$1,491,250

– DOE  $1,193,000
– Contractor $298,250

Timeline

Budget

• Montana State University
• Pleotint LLC

Partners



Overall Project Structure
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Objectives

1. Optimize the hydrogenase stability and electron 
transfer

2. Optimize the semiconductor nano-particle 
photocatalysis, oxygen scavenging, and electron 
transfer properties of protein nano-cages

3. Gel/Matrix immobilization and composite 
formulation of nano-materials and hydrogenase

4. Device fabrication for H2 production



Approaches

Biological catalysts (Hydrogenases)
-stabilization/immobilization
-electron transfer

Nanoparticle Photocatalysts
-light harvesting
-O2 scavenging

Couple Different Catalyst Systems for Light Driven 
Hydrogen Generation



Hydrogen from Water:
Coupled Reactions
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GOAL: use a catalyst to reduce an 
electron mediator (methyl viologen, MV2+) 
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2- as electron donor.  Another 
catalyst then uses MV+• to produce H2. 
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Enzymatic H2 Formation
Hydrogenase enzymes

Highly active catalysts (9,000 H2/enz/sec)
Utilize MV+ as reducing equivalents

H2MV2+

MV+• H+



Biological Hydrogen Production
H2 2H+ + 2e-

Hydrogenase
Peters et al, Science (1998)



Hydrogenase
Immobilization

Advantages
– Solid Phase – free flow of substrates and products
– Durability – Proteolysis resistance, temperature 

stability, pH stability, increased shelf life

Approaches
– Silica oxide Sol-Gel (Tim Elgren)
– Poly(viologen) electro-active polymers (Pleotint

LLC)



Encapsulation/Immobilization

Incorporation of hydrogenase enzymes 
into materials to facilitate electron 
transfer reactions, provide oxygen 
protection, and enhance stability 



Procedure for making Sol-Gel hydrogenase
materials

Prepared Sol-Gel mixture

Making Sol-Gel hydrogenase materials

Sonicated solution for 30 min in cold bath 
(with degassing)

100 µL hydrogenase (100 µg of protein
in 50 mM Tris- HCl pH 8,0) :

100 µL  Sol-Gel mixture

Polymerization of Sol- Gel material for 3-5 min

1.57 ml Tetramethyl-ortho-silicate (TMOS)
350 µL H2O
11 µL 0.04 M HCl



% activity
Hydrogenase

Solution Sol-Gel

1. Clostridium 
pasterianum 100 63.8±15.8

2. Lamprobacter 
modestogalophilus 100 67.5±8.8

3. Thiocapsa 
roseopersicina 100 70.1±2.5

Recovery of hydrogenase activity 
encapsulated in Sol-Gel



Thermal stability of hydrogenases 
encapsulated in Sol-Gel materials 

A - Clostridium pasterianum hydrogenase
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B - Lamprobacter modestogalophilus hydrogenase

Thermal stability of hydrogenases
encapsulated in Sol-Gel materials



Association of Redox Mediator
with Gel Matrix

N N RR'

R, R'  =   CH3
           CH2CH2CH2-SO3

–

           CH2CH2CO2
–

                CH2CH2NH3
+

               (CH2)n -PO3H2



Nanoparticle synthesis within 
the Ferritin Protein Cage

Ferritin protein cage
24 subunits - 12 nm diam

TEM of metal oxide
nanoparticles



Protein Cage Photocatalysts

FeOOH 
core

Light absorption by ferritin core 
(FeOOH) causes charge separation 
oxidizes R- and reduces M+ 

catalytically.
Examples:

• Reduction of CrO4
2- to Cr(III) using 

tartrate as electron donor (Kim et al., Chem. 
Mater., 2002).

• Reduction of Cu(II) to Cu(0) particles 
using citrate as electron donor (Ensign et 
al., Inor. Chem., 2004).

Current: use this photocatalytic 
system (or an analogue) to 
reduce MV2+ to MV+• using 
sulfite as electron donor.
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Thermodynamics and Kinetics

• electron transfer from 
sulfite to methyl 
viologen is 
thermodynamically 
favorable, ∆G = -48 
kJ/mol

• reduction of methyl 
viologen by sulfite 
does not normally 
occur (kinetic barrier) 

viologen reduction

A catalyst is 
required for 

viologen 
reduction by 

sulfite

SO3
2- + MV2+ → SO4

2- + MV+•1
2

1
2
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e-
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Photoreduction of Cu(II) to form protein encapsulated Cuo nanoparticles

Very efficient scavenging of O2 from the media 
2 Cuo + O2 + 4H+ ––>  2 Cu(II) +  2H2O

TEM of Ferritin encapsulated
Cu nanoparticles

50 nm

Photoreduction of Cu(II)



Long-Term Goal – Device for photocatalytic
hydrogen production – composite materials 
(nanoparticles and hydrogenase enzymes)



Semiconductor
Nanoparticle
Optimization

Hydrogenase
Optimization

Composite 
Optimization

Device Analysis of H2 production efficiency

Re-optimization

Re-optimization

Development of device prototype 
demonstration of light harvesting

Future Goals



Hydrogen Safety

The most significant hydrogen hazard 
associated with this project is:
Accidental ignition of hydrogen gas; leading 
to injury of personnel and damage to 
equipment from both fire and explosive 
debris such as: glassware and/or chemicals



Hydrogen Safety

Our approach to deal with this hazard is: 
Follow lab protocol of wearing safety glasses, 

gloves
Keep glove box H2 level below 3%
Vent gases in fume hood
Keep away from open flame and flammable 

chemicals
Keep quantity of H2 production to a minimum
In event of accidental explosion contact 
Jeff Shada, Safety and Risk Management, 

Advanced Tech Park, 406-994-2711 
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