Integrated Ceramic Membrane System for H₂ Production

Cooperative Agreement: DE-FC36-00GO10534

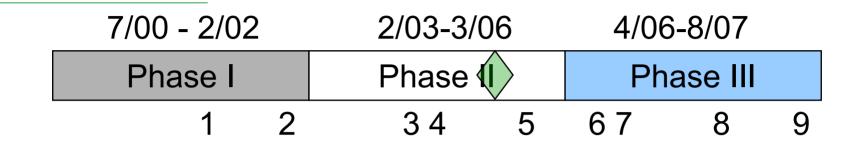
Joe Schwartz Ray Drnevich Prasad Apte Praxair - Tonawanda, NY

Ashok Damle Research Triangle Institute Research Triangle Park, NC

DOE Annual Merit Review Meeting May 24, 2005

Copyright © 2005 Praxair, Inc.

This paper was written with support of the U.S. Department of Energy under Contract No. DE-FC36-00GO10534. The Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted paper. This presentation does not contain any proprietary or confidential information.



Project PDP3

Program Timeline

> Phase I - Feasibility

- 1 Selected Two-Stage Process with Pd Membrane
- 2 Assessed Economics vs. Current Options

> Phase II - Hydrogen Membrane Development

- 3 Select Alloy and Substrate
- 4 Membrane Production and Testing
- 5 Verify Reactor Performance and Update Process Economics

> Phase III - System Design and Testing

- 6 Design (DFMA Focus) and Fabricate Multi-Tube Pilot Unit
- 7 Operate Pilot Unit
- 8 Verify System Performance and Update Process Economics
- 9 Develop Commercial Offering

	Phase IIB	Spent	FY2005
DOE	\$633,697	\$101,063	\$419,297
Praxair	\$211,232	\$33,688	\$139,766
TOTAL	\$844,930	\$134,751	\$559,063

FY2005 spending through March 31, 2005 Full amount for FY2005 has not been committed

This presentation does not contain any proprietary or confidential information

Barriers Addressed

> A. Fuel Processor Capital Costs

- Process intensification (ex. combine WGS and PSA)
- Focus on substrates with much lower cost than commercially available porous metals and ceramics

B. Fuel Processor Manufacturing

- Develop a standard design
- Take advantage of DFMA and multiple identical units

C. Operation and Maintenance

- Existing remote operations network can monitor all units
- Standard design will allow for standard O&M

F. Control and Safety

• Safety is the top priority and essential to the success of any commercial product

Barriers Addressed

> L. Durability

- Ceramic substrate eliminates metal/metal interactions
- Close thermal expansion match allows for thermal cycling

M. Impurities

- Effects of CO and H₂S are being studied
- CO is important, but sulfur can be removed upstream

N. Defects

- Experience in OTM program has led to a good seal
- Chemical deposition techniques being improved

> O. Selectivity

- Pd membranes have very high selectivity
- A good seal and leak-tight membrane ensure selectivity

Barriers Addressed

> P. Operating Temperature

- Pd membrane and WGS operate at similar temperatures
- WGS temp. is preferred to SMR temp. for maximum yield

> Q. Flux

• Consistent improvement in reducing film thickness, increasing porosity, decreasing pore size, and increasing flux

S. Cost

- Pd cost is fixed by layer thickness
- Producing low-cost substrate is the key to reducing cost
- High commercial substrate cost is a significant barrier for HTM

> T. Oxygen Separation Technology

- Significant work has been done to develop OTM
- OTM offers a revolutionary breakthrough technology
- OTM work not funded under this program

Partners

> Praxair

- Leader in hydrogen purification, production, and distribution
- Leader in electroceramic materials dielectrics, superconductors, ...
- Overall program lead
- Substrate development
- Process development and economics

Research Triangle Institute

- Membrane development
- Palladium coating
- Membrane testing

Joint

- Membrane Production
 - Unique opportunity to integrate substrate and alloy development
 - Iterative process
- Reactor Design

Objectives

Program - Develop a low-cost reactive membrane based hydrogen production system

- Use existing natural gas infrastructure
- High thermal efficiency
- Serve both the transportation and industrial markets
 - Industrial market provides immediate opportunities
 - Gain valuable operating experience before fuel cells arrive

> Phase IIB – Integrate HTM with WGS

- Low-cost hydrogen production, separation, and purification
- Demonstrate HTM performance in reactive environments
- Develop versatile system that can be combined with any syngas generation method for improving hydrogen production, especially at distributed scale

Program Approach

Phase I - Define Concepts

- Technoeconomic Feasibility Study
- Define Development Program

> Phase II - Bench-Scale HTM Development

- A Develop and Test HTM Alloy and Substrate
- B Integrate HTM and WGS in Single Tube Tests
- > Phase III Multi-Tube Reactor Development
 - Pilot-Scale Demonstration
 - Define Mass Production Methods

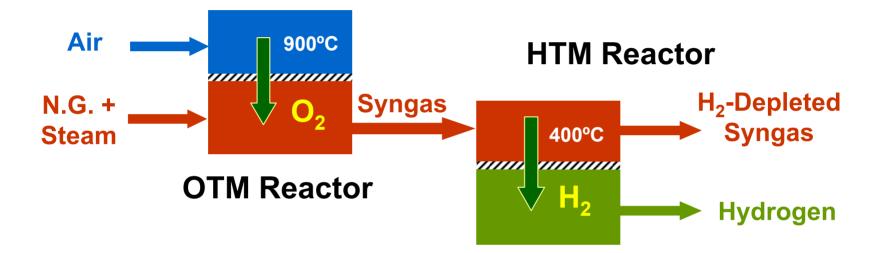
Phase IIB Plan

> HTM Development

- Thin Pd-alloy layer on low-cost ceramic substrate
- Demonstrate sufficient flux, life, and cycling
- Demonstrate resistance to contamination
- Produce commercial-scale membranes
- Develop manufacturing process for low-cost HTM

> Process Development

- Demonstrate HTM performance in membrane reactor
- Develop conceptual design for full-scale unit
- Define manufacturing process for producing reactors

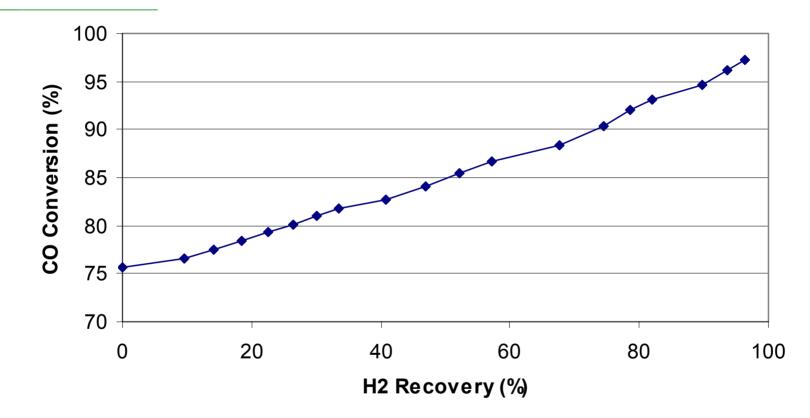

Phase IIB Plan cont.

> Process Economics

- Confirm membrane and process are cost-effective
- Assess alternative technologies
- Go/No Go decision based on technoeconomic viability
- HTM must have the potential to be the preferred method, or others should be pursued instead

> Phase III Plan

OTM/HTM Concept Preferred Process - Sequential Reactors

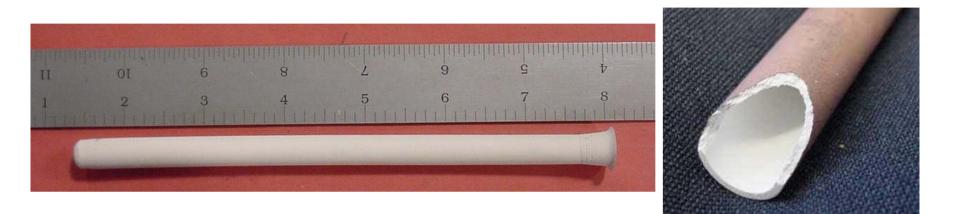


OTM Reactor Synthesis gas generation $CH_4 + \frac{1}{2}O_2 \rightarrow 2H_2 + CO$ $CH_4 + H_2O \rightarrow 3H_2 + CO$

HTM Reactor Water-gas shift reaction CO + $H_2O \rightarrow H_2 + CO_2$ Hydrogen Separation

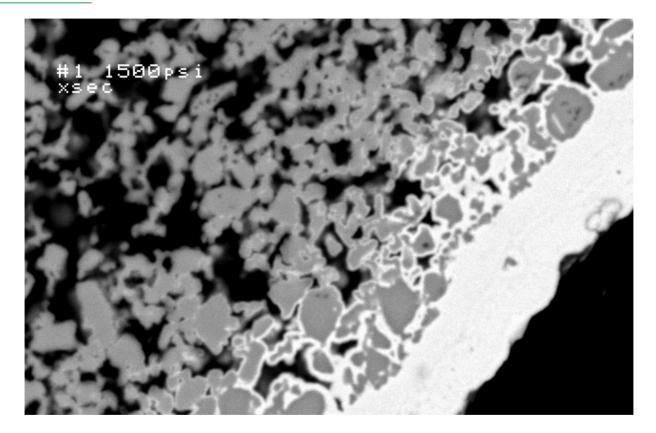
Enhanced CO Conversion

 Simulation results show enhanced CO conversion is possible using a hydrogen membrane HTM/WGS at 400°C, 150 psig, syngas composition from OTM module

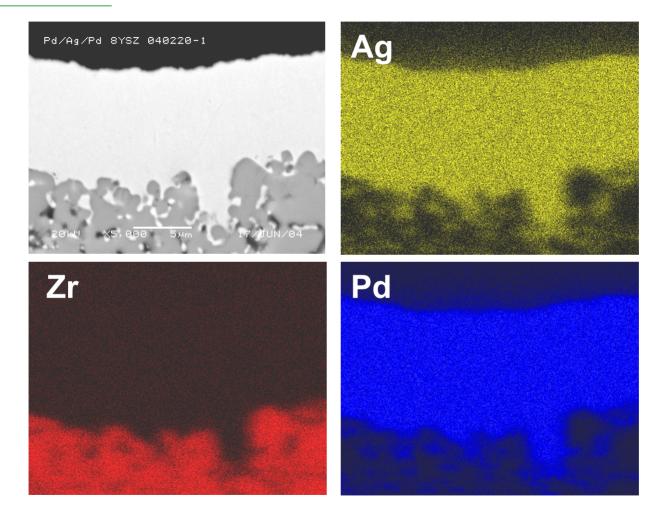

Palladium Membrane Targets

	2003	2005	2010
Flux (scfh/ft²)	60	100	200
Cost (\$/ft ²)	2000	1500	1000
Durability (yrs)	< 1	1	3
∆P Operating Capability	100	200	400
Hydrogen Recovery	60	> 70	> 80
Hydrogen Quality	99.9	99.9	99.95

- Flux based on 20 psid hydrogen pressure at 400°C
- \$/scfh is our most important consideration \$5/scfh in 2010

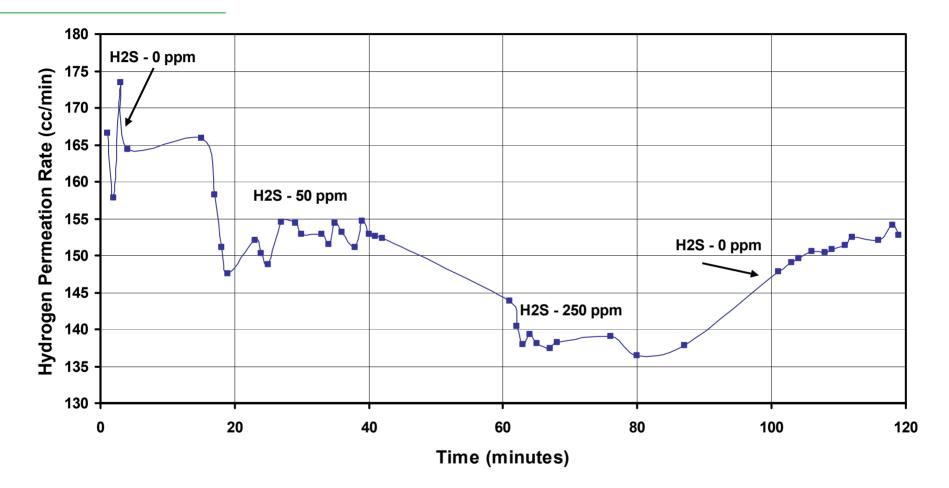

Low-Cost Ceramic Substrate

- Modified zirconia designed to match thermal expansion of palladium alloy and to have high strength and stability
- Layered structure produced using Praxair's patented isopressing technique for producing porous ceramics
- Layer adjacent to membrane has smallest pore size
- Closed-end tube allows for expansion and simplifies sealing
- Substrate is coated using electroless plating


Pd-Ag Film Structure

Surface treatments produced very small surface pores and larger pores in the bulk layer

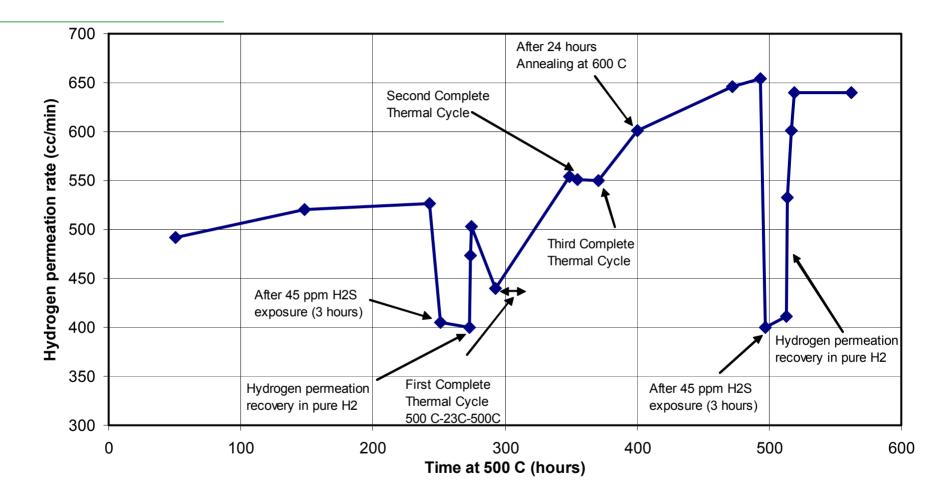
Membrane Composition



> Ag and Pd mixed well and penetrated enough to adhere

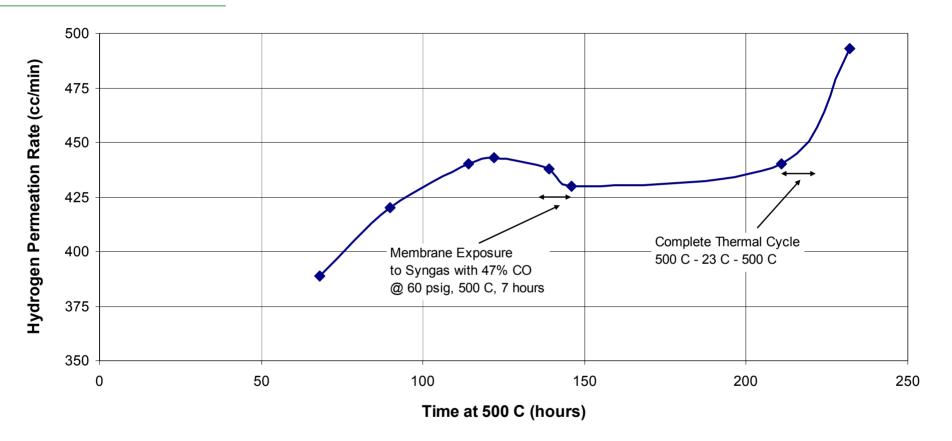
This presentation does not contain any proprietary or confidential information

Effect of H₂S on Pd-Cu

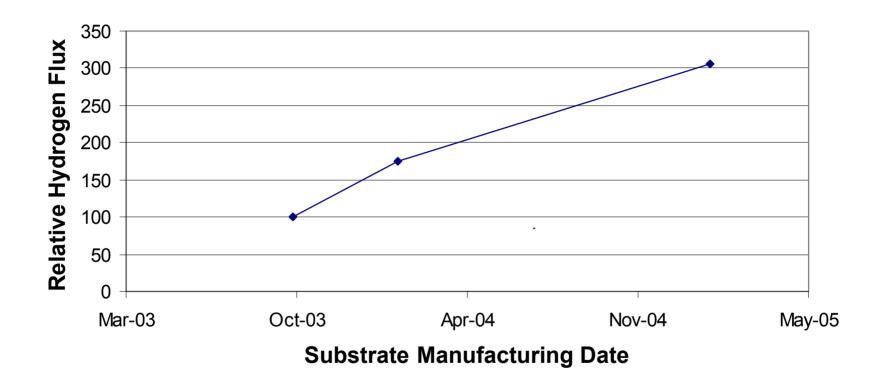

H₂S reduced flux within minutes

Most of lost performance was recovered when H₂S was removed

This presentation does not contain any proprietary or confidential information


Effect of H₂S on Pd-Ag

Excellent response to thermal and compositional cycling


Effect of CO on Pd-Ag

> 7 hours of CO exposure had no significant impact on membrane performance

Pd-Ag Membrane Flux

- Hydrogen flux has tripled compared to earlier membranes
- Continuous improvement in membrane performance while maintaining or reducing cost

2004 Reviewer Comments

Need to look at effect of contaminants

Review of effects of H₂S and CO underway

> Applicable to steam reforming?

 HTM can be used downstream of SMR, but Pd membranes would probably not be used in a high-temperature SMR

Suggest WGS catalyst partner as a good idea

• Large WGS catalyst manufacturer has provided help

Need new membrane material

- Other materials are being considered, but Pd is the lead candidate
- Systems approach focus on entire system
 - This program is focused on developing the WGS/HTM portion
 - Insufficient resources to develop the OTM portion

Consider collaboration with other programs

• Additional collaboration will be considered if it can add value

Future Work

Continue performance improvement

• Improve substrate and coating to increase flux, life, cyclability, and resistance to contaminants

> Demonstrate performance in integrated WGS/HTM

- Multi-tube pre-commercial system
- Design low-cost reactor and membrane to meet hydrogen cost goal of \$5/scfh in 2010
 - Use performance test results and integrated design to minimize the cost of producing hydrogen
- Confirm that HTM has the potential to be the lowestcost option, or pursue other technology instead
 - Compare HTM to other options based on the cost of producing hydrogen

Conclusions

- Pd-based membrane tubes can be produced at a relatively low cost using Praxair's substrates and manufacturing techniques
- Membrane and substrate properties have continuously and significantly improved, but do not meet the 2010 DOE goals
- > 2010 cost goal of \$5/scfh will be difficult to achieve and probably cannot be done with current high-cost substrates
- > HTM must provide advantages by integration with WGS to beat low-cost PSA for hydrogen purification and production

Publications and Presentations

- > DOE reports
- Palladium-Alloy Based Membrane Reactor Process for Hydrogen Generation" abstract submitted to 2005 Fuel Cell Seminar

Hydrogen Safety

The most significant hydrogen hazard associated with this project is:

Failure to contain flammable and toxic gases, including hydrogen and especially CO

Hydrogen Safety

> Our approach to deal with this hazard is:

- Ensure that the test, pilot, and commercial units are designed properly to prevent leaks and that any accidental leak is properly directed to a safe location
- Test facilities are equipped with CO and flammable gas detection equipment
- Tests are done at elevated pressure to ensure that air will not enter the system
- Conduct safety reviews for all experimental setups
- Follow all applicable external and internal standards
- Identify and mitigate potential risks as testing progresses
- Incorporate safety information in component design

FMEA or HAZOP will be performed after detailed PFD for pilot system is defined