System Design and New Materials for Reversible Solid-Oxide, High-Temperature Steam Electrolysis

> Jim Ruud GE Global Research May 23, 2005

> > Project ID #: PDP42



DE-FC36-05G015024

This presentation does not contain any proprietary or confidential information

#### Overview

#### Timeline

Project start date: TBD

Project duration: 3 years Percent complete: Contract has not started

#### Budget

Total project funding:

DOE share:

Contractor share:

Funding for FY05: TBD

Hydrogen Generation by Water Electrolysis

Barrier K. Electricity costs

High-temperature solid oxide electrolysis can use lower cost energy in the form of steam for water splitting. Electrolysis systems that can produce both hydrogen and electricity must be evaluated.

#### Partners

Northwestern University

Functional Coating Technologies, LLC



#### Objective

Develop a pilot scale, reversible SOEC system design

capable of 1000 kg/day H<sub>2</sub> production at \$2/kg

based on new, low-cost, reversible solid oxide electrodes



## Approach





### System Approach

Design a pilot scale system achieving \$2/kg hydrogen production cost

•Develop a cost model for reversible hydrogen/electricity generation

•Produce a comprehensive heat and mass transfer systems model

•Design an optimized pilot-scale system



### Materials Approach

Develop low cost, reversible electrode materials

- •Design electrolysis electrocatalytic materials for reversible SOEC electrodes
- •Optimize electrode microstructures
- •Optimize thin-electrolyte, reversible electrolysis cells
- Map reversible electrode performance and degradation within the system operating space determined by the system design

•Develop microstructure-based performance and failure modeling allowing predictive capability for assessing long-term operation and stability



# Materials & microstructures

#### Modeling





Performance and durability

## Future Work

#### Project Year 1

System

- Results from cost model
- DP: Target cost of H2 < \$2/kg achievable?

Performance

- Baseline materials durability and performance Materials
- Optimize microstructures
- New oxygen electrode materials NU
- Advanced characterization methods
- Accelerated testing methods FCT
- Button cell fabrication processes





## Hydrogen Safety

The most significant hydrogen hazard associated with this project is uncontrolled combustion of a hydrogen leak with air during performance testing of SOEC button cells.



## Hydrogen Safety

Our approach to deal with this hazard is:

- Design test rigs for controlled combustion of hydrogen gas at the outlet.
- Operate test rigs in a specially designed test lab with continuous exhaust and safety sensor systems that stop the flow of hydrogen in the event of an exhaust failure.
- Train operators with a standard operating procedure.
- Audit the test lab quarterly for safety.

