
Fundamentals of a Solar-thermal Mn₂O₃/MnO Thermochemical Cycle to Split Water

Al Weimer
University of Colorado
23 May 2005

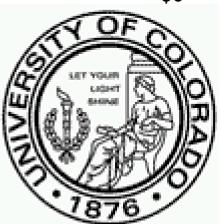
Project ID No. PDP44

Overview

Timeline

- 6-1-2005
- 5-31-2009
- 0%

Budget


Total Project Funding

\$1,095,000 DOE

\$270,000 Cost share

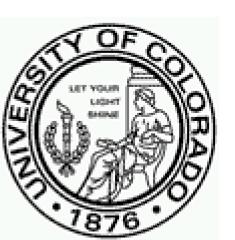
Funds received in FY04

\$0

Barriers

- J. Rate of Hydrogen Production
- M. Materials Durability
- N. Materials and systems Engineering
- P. Diurnal Operation Limitation
- Q. Cost
- R. System Efficiency
- T. Renewable Integration
- V. High and Ultrahigh Temperature Thermochemical Technology
- W. High Temperature Materials
- Y. Solar Capital Cost

Partners

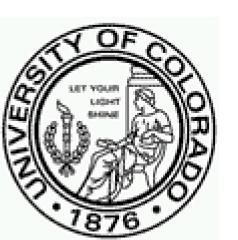

Swiss Federal Research Institute (ETH-Zurich)

Objectives

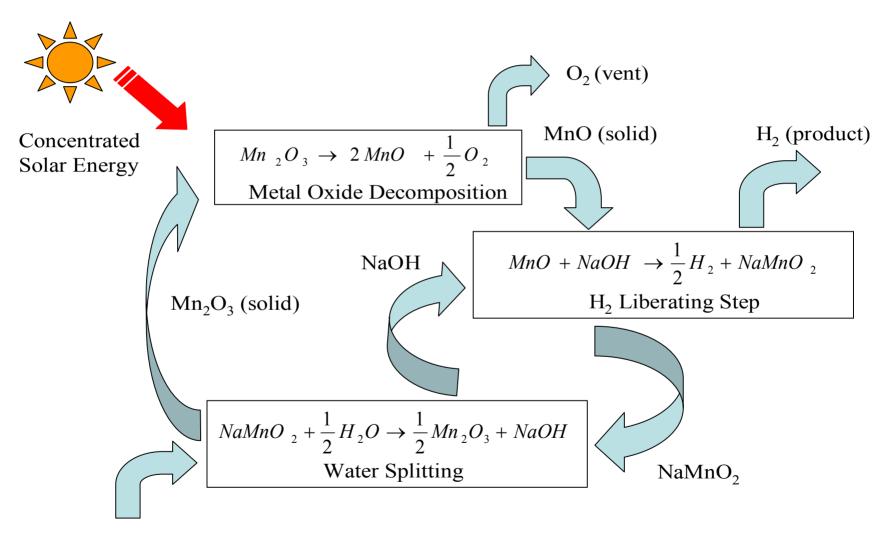
- Develop an understanding of the Mn₂O₃/MnO solar-thermal thermochemical cycle through theoretical and experimental investigation
- Based on the above, develop a process flow diagram and carry out an economic analysis of the best process option

Approach

- Develop an initial process flow diagram based on available published information regarding the cycle; simulate integrated process; identify key areas for research and development
- Develop and carry out an experimental plan to evaluate the feasibility of all steps in the cycle
- Carry out CFD modeling and simulation to develop an understanding of solar-thermal reactor transport mechanisms
- Analyze cost and efficiency metrics for integrated cycle performance; provide final process flow diagram based on best scenario

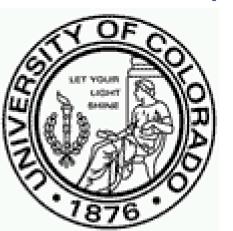

Technical Accomplishments/ Progress/Results

- Literature surveyed
- Preliminary flow sheet developed based on literature information (conventional processing)
- Very preliminary economics carried out
- Preliminary key areas identified for research (based on preliminary simulations and economics)
- Experimental work plan being developed



Literature Surveyed

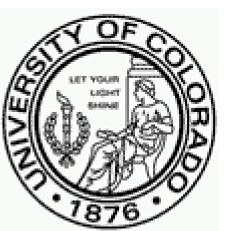
- Sturzenegger, M., J. Ganz, P. Nuesch, and Th. Schelling, "Solar hydrogen from a manganese oxide based thermochemical cycle," J. Phys. IV France, 9, 331-335 (1999).
- Sturzenegger, M. and P. Nuesch, "Efficiency analysis for a manganese-oxide based thermochemical cycle," Energy, 24, 959-970 (1999).

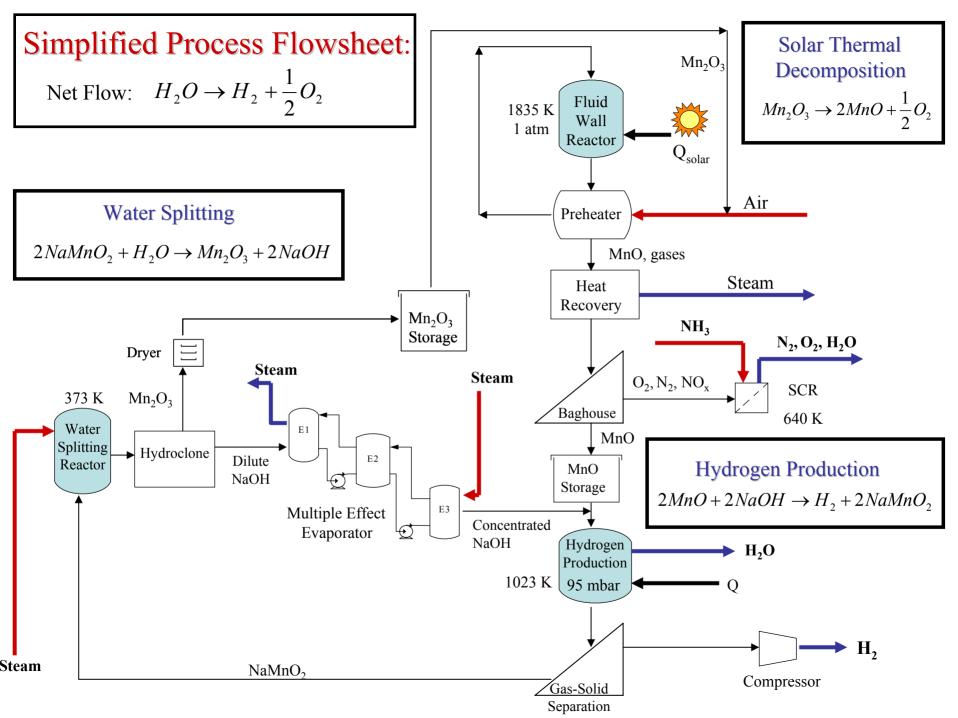

Literature Cycle

H₂O (vapor)

Preliminary Flowsheet Development

- Based on literature only, a preliminary PFD was developed for the Mn₂O₃/MnO solar-thermal thermochemical cycle
- Only the most obvious and conservative unit operations were considered for this initial pass


Process Design Premises


- Mn₂O₃ dissociated (80%) in air at 1835 K
- NOx considered formed and dealt with via 640 K SCR
- Molten salt heat recovery system considered
- H₂ production step carried out at reduced P; H₂ removed to shift equilibrium to right (100%)
- 90% conversion assumed on water splitting step
- Multi-effect evaporator considered to recover NaOH
- H₂ supplied to pipeline at 300 psig

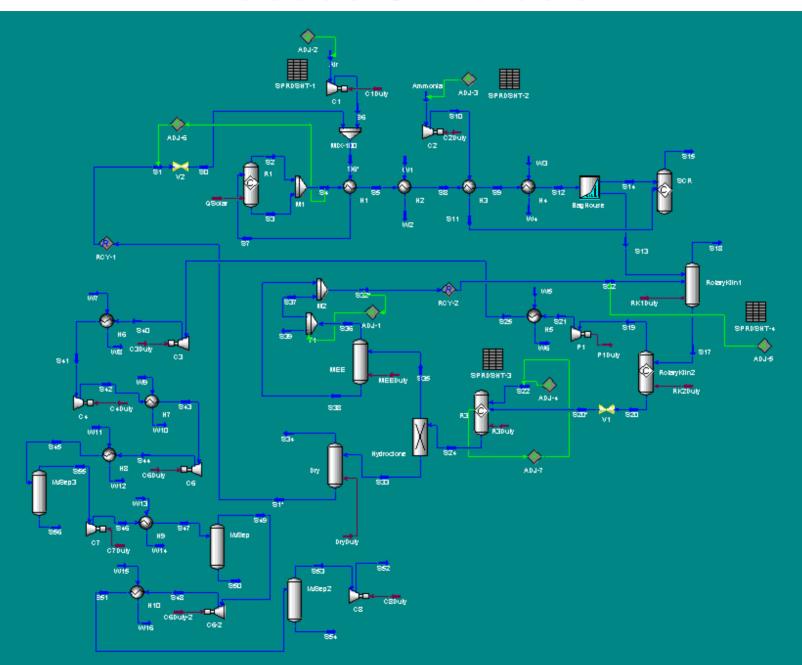
Process Economics Premises

- Economics by study estimate (factor) method using major purchased equipment costs (Lang's Factor)
- Base Case = 24 MW_{th} plant size; Integrated to 150,000 kg H₂/day
- 15 yr plant lifetime; 2453 hours per year (28 % on-sun)
- 12.5 % target IRR
- 25 % contingency
- Working capital = 18 % of FCI
- Equity funded
- 1.9% inflation; 7 yr MACR depreciation
- 228 operators in 150,000 kg H₂/day plant

Safety, Environmental, and Health Considerations

Environmental Considerations

- Nitrogen oxides (NO_x) potentially formed at high temperature in solar thermal reactor
- •NO_x can be reduced via selective catalytic reduction (SCR).


Chemical Reactions
$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$$

 $6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O$

Catalyst: TiO₂ / V₂O₅ / WO₃

Safety and Health Considerations

- Corrosive chemicals (NaOH, NH₃)
- Flammability hazards (H₂, O₂)
- Central nervous system effects from prolonged exposure (MnO, Mn₂O₃)

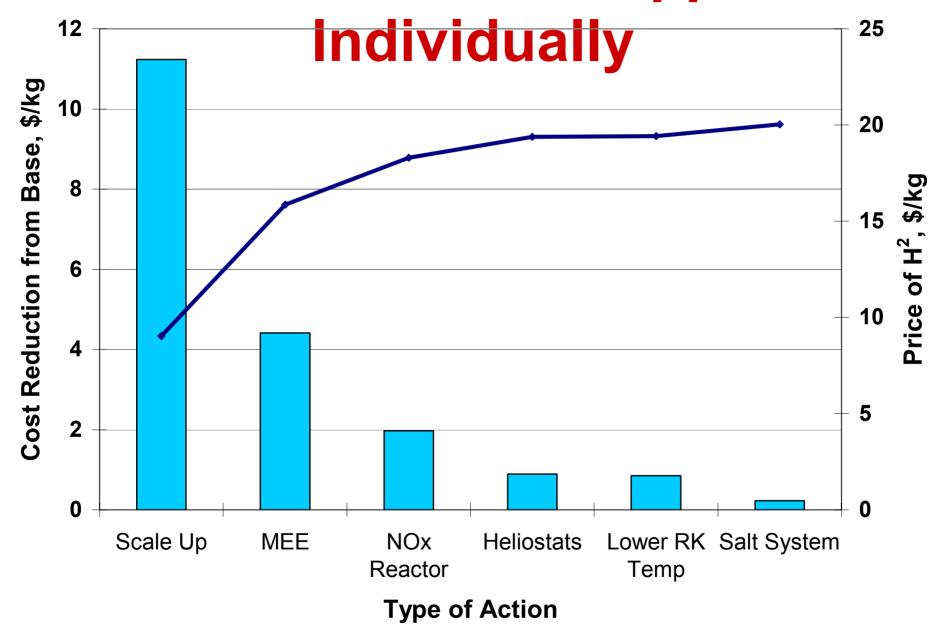
Process Simulation

Material Balance Summary*

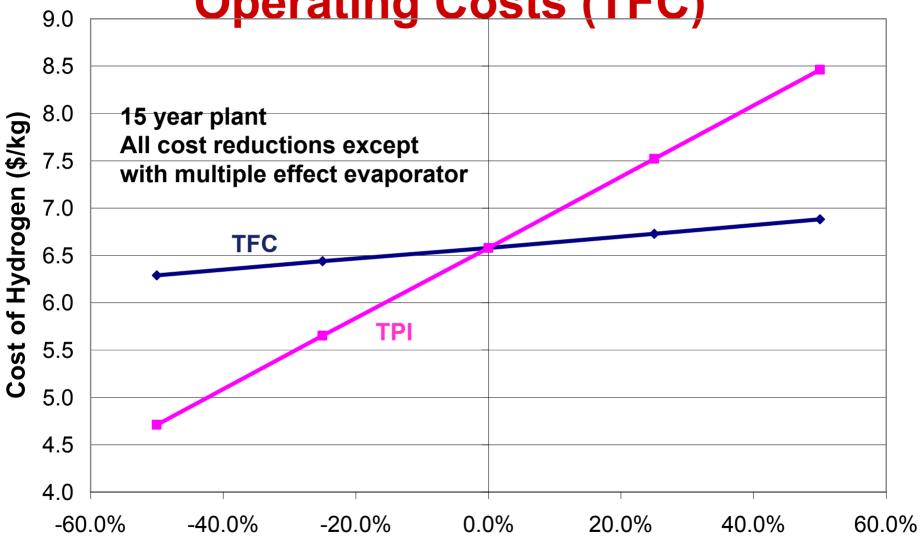
	Base Case: Single	95 solar thermal reactors
	24 MW _{th} solar thermal	(each 24 MW _{th})
	reactor	Single Back-end
Products		
H ₂	235 kg/hr	22,325 kg/hr
	(1,579 kg/day), \$20.27/kg	(150,024 kg/day), \$9.04/kg
Low Pressure Steam	2,491 kg/hr	236,645 kg/hr
Raw Materials and Utilities		
Ammonia	25 kg/hr	2,329 kg/hr
Low pressure steam	46,295 kg/hr	4,398,025 kg/hr
Cooling water	64,390 kg/hr	6,117,050 kg/hr
Natural Gas	21,275 scf/hr	2,021,082 scf/hr
Electricity	846 kWh/hr	80,370 kWh/hr

^{*} Preliminary Process Design (12.5% IRR; 15 year lifetime)

Possible Cost Reducing Areas


Equipment

- Mult. Effect Evaporator 16% total BMC
- Heliostats 12% total BMC
- NOx Reactor 11% total BMC
- Salt System 2.3% total BMC


Variable costs

- Ammonia 19% TVC
- Steam 48% TVC
- Natural Gas 17% TVC

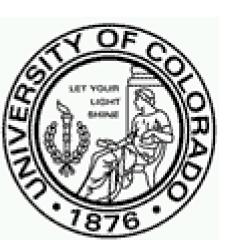
Cost Reductions Applied

Sensitivity Analysis: TPI and Fixed
Operating Costs (TFC)

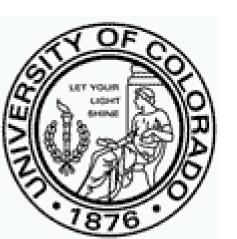

% Change in Total Fixed Costs, and Total Permanent Investment

Impact of Cost Reductions

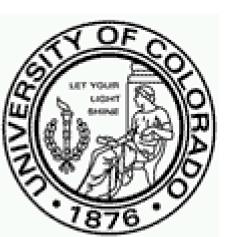
- All cost reductions except multiple effect evaporator:
 - \$829 million TPI
 - \$6.58/kg for 12.5% IRR (15 yr lifetime)
 - -8.8% ROI, 11.4 years PBP
- All cost reductions (40 yr plant life)
 - \$764 million TPI, \$3.01/kg for 10 % IRR
 - Break Even: \$1.50/kg H₂ selling price


Key Areas for Research

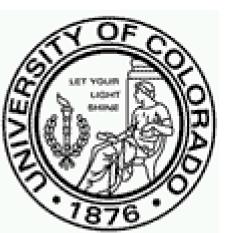
- Integration of single secondary reaction step with multiple solar fields/reactors (\$11+/kg)
- NaOH recovery step using alternative technologies such as membrane separation, ...(\$4+/kg)
- Rapid Mn₂O₃→ 2 MnO + ½ O₂ in air and in-situ mitigation of NOx (\$2/kg)
- Reduced heliostat costs (\$1/kg)
- Kinetics of Mn₂O₃ → 2 MnO + ½ O₂ (lowest temperature)
 (\$1/kg)
- Consider alternative secondary reaction steps


Experimental Work Plan Development

- Rapid dissociation kinetics (Mn₂O₃→2MnO +1/2O₂) investigation underway (STCH funding in Yr 1)
- MnO + NaOH → 1/2H₂ + NaMnO₂; H₂ liberating step experiments being planned
- NaMnO₂ + ½ H₂O → 1/2 Mn₂O₃ + NaOH; water splitting step experiments being planned


Hydrogen Safety

- At this stage of the project, H₂ quantities involved in the experiments are so minimal as to pose no H₂ safety risks
- The most significant current hazard is associated with ultra-high temperature (> 1500°C) operations
- Hazards mitigated with personnel training, well documented SOPs, and internal safety reviews


Conclusions/Summary

- The Mn₂O₃/MnO cycle provides an opportunity for low cost renewable H₂
- Significant development needs made relative to process integration at large scale, NaOH recovery and NOx mitigation

Acknowledgement

DOE Hydrogen Program

