Hybrid Sulfur Thermochemical Process Development

William A. Summers* and M. R. Buckner Savannah River National Laboratory May 23, 2005

*Presenter

This presentation does not contain any proprietary or confidential information.

Project PDP45

Overview

Timeline

- Start Date: June, 2004
- End Date: September, 2005
- 75% Complete
- Follow-on to complete integrated lab demo to be funded for 10/05 – 9/08

Budget

- Total funding (to date) \$480 K
- FY04 Funding \$180 K
- FY05 Funding \$300 K
- FY06 thru FY08 TBD

Barriers

- Electrolyzer performance and cost
- High temperature materials
- Lower nuclear H₂ cost than solar TC goal of \$3/gge at plant gate in 2015
- Proof-of-concept to meet MW-scale pilot plant decision by end of FY08

Collaborators

- Univ. of So. Carolina Electrolyzer
- Westinghouse Electric consultation
- Proton Energy Systems PEM Elec.
- Sandia National Lab and INL H₂SO₄ loop development & catalysts

Objectives

- To assist DOE-NE in selecting the preferred Thermochemical Cycle for integration with an advanced nuclear reactor
 - Develop a conceptual design for the Hybrid Sulfur thermochemical hydrogen production system, including preliminary flowsheet analysis, estimated system performance, and projected hydrogen production costs
 - Identify key technical issues and concerns, and prepare a development plan for a fully-integrated laboratory demonstration of the HyS Cycle
 - Perform proof-of-principle demonstration testing of an SO₂ anode-depolarized electrolyzer using a single-cell PEMtype water electrolyzer under near-ambient conditions

Technical Approach

- Create a high-efficiency process design for the Hybrid Sulfur thermochemical water-splitting cycle
 - Update and improve original Westinghouse flowsheets
 - Use AspenPlus software to calculate mass and energy balances and to optimize system performance and H_2 cost
- Develop and test a high-performance PEM-based electrolyzer using SO₂ anode depolarization
 - Leverage PEM fuel cell and electrolyzer advancements to develop a lowcost H₂O/SO₂ electrolyzer achieving cell voltages of <0.6 volts per cell
 - Perform small-scale proof-of-concept testing beginning with a modified PEM water electrolyzer
 - Characterize performance, materials integrity, sulfur crossover, and effects of operating conditions (temperature, pressure, acid concentration)

Accomplishments

- Conceptual Design Report Completed (4/1/05)
 - Improved system design with higher process efficiency of >50% (HHV)
 - SO₂-depolarized electrolyzer analysis performed; MEA/PEM concept selected; detailed development plan prepared
 - Key technical issues identified and approaches developed
 - Three patent disclosures prepared
- Ambient Pressure Electrolyzer Testing
 - Test plan prepared and issued
 - Test facility design completed; construction in progress
 - PEM-based SO₂-depolarized electrolyzer procured
- Electrolyzer Development and Integrated Testing
 - Integrated lab-scale test plan and conceptual design completed
 - High Pressure (20 bar) electrolyzer design scheduled for fourth quarter

Hybrid Sulfur Cycle

- Originally developed by Westinghouse Electric in 1973-1983
- Two-step hybrid thermochemical cycle; only S-O-H chemistry
- SO_2 anode-depolarization reduces reversible cell voltage to 0.17 VDC per cell (more than 85% less than pure water electrolysis). Practical voltages are 0.45 to 0.60 VDC per cell.

Processing Steps and Functions Defined

- High temperature (>900°C) heat source could be nuclear reactor or solar thermal
- Thermochemical system has three main processing units
 - SO₂-depolarized electrolyzers
 - Sulfuric Acid concentration and decomposition
 - SO₂/O₂ separation
- High Thermal Efficiency >50% (HHV basis) based on rigorous flowsheet modeling

Process Design Optimized

- AspenPlus flowsheet, material and energy balances, performance, heat source integration, capital and production costs
- Performance goals set for electrolyzer; test data is needed for further design optimization
- Improved acid processing scheme developed (89% Section B thermal efficiency vs. previous 75%)
- High-efficiency SO₂/O₂ separation system developed (patent pending)
- Tradeoff studies in process for electrolyzer acid feed concentration, cell temperature and pressure, and acid decomposition temperature

Tradeoff Studies

- Greatest performance uncertainty is with regard to electrolyzer efficiency
- High acid concentrations increase voltage (lower cell efficiency) but lower Section B thermal requirements
- Lower current densities reduce cell voltage but require bigger cells
- Other variables include T and P and SO₂ conversion per pass
- More experimental data is needed
- Sensitivity analysis shows overall plant thermal efficiency varies from 45.4% (20% conversion, 600 mV) to 52.3% (75% conversion, 450 mV)
- Higher temperature thermal input to Section B (>900°C) may permit greater total plant thermal efficiency

Overall HyS Plant thermal efficiency (HHV basis) vs. Cell Voltage for 900°C heat input

Baseline HyS hydrogen production costs exceed goals and are less than SI Process

		<u>SI*</u>	<u>HyS</u>
Plant Rating	MW _{th}	2400	2400
Plant Efficiency	% (HHV basis)	52-42	48.8**
Hydrogen Output	Tonnes/Day	760-614	580
Electric Output	MWe	0	216
Reactor System Cost	\$M	1,150	1,198
Electrolyzer Cost	\$ per m ²	N/A	2000
Hydrogen Plant Cost	\$M	819	516
Electricity @ 3¢/kWh	\$M/yr	N/A	(51)
Total Annual Cost	\$M/yr	413-399	306
Net Hydrogen Cost	\$ per kg	1.65-1.98	1.60
- with O2 credit		1.36-1.69	1.31
DOE Solar Goal (2015)	\$ per kg	3.00	3.00

*W.A. Summers et al., "Centralized Hydrogen Production from Nuclear Power: Infrastructure Analysis and Test-Case Design Study, Interim Project Report, Phase A Infrastructure Analysis", US DOE NERI Topical Report, Project No. 02-160, 07/31/2004

**Current flowsheet; >50% expected.

Electrolyzer Approach

- Anode feed consists of SO₂ dissolved in sulfuric acid
- Gaseous H₂ evolves on cathode
- Cathode can be dry or contain recirculating sulfuric acid
- Original Westinghouse cells used microporous rubber membranes
- Current concept will employ Nafion membrane in MEA/PEM arrangement
- Initial testing on water only showed current densities up to 1900 mA/cm²

SO₂ anode-depolarized electrolysis

Ambient Pressure Testing of Electrolyzer

Test Purposes

- Verify reduced cell voltages based on SO₂-depolarization
- Verify applicability of MEA and PEM concepts
- Examine issues of SO₂ crossover and cell degradation with time
- Acquire data for modeling and system scale-up
- Experimental Status
 - Test plan prepared
 - Awaiting completion of test facility

Modified PEM Water Electrolyzer (84 cm² active cell area)

(Manufactured by Proton Energy Systems, Inc. with SRNL specified materials and changes)

Test Facility in Progress

- Design complete and all equipment on hand
- Operating plan and safety analysis completed
- Final approvals in progress
- Shakedown testing planned for mid-May

Fume Hood for installation of SO₂ anode-depolarized electrolyzer tests

Bench-Scale Electrolyzer Development Schedule

Technical Issues and Concerns

- Compatibility of MEA/PEM design with operating conditions
- Prevention of SO₂ crossover to cathode (i.e. sulfur deposits)
- Need for better data on SO₂ solubility in sulfuric acid
- Material selections for MEA components
- Electrocatalyst type and loadings
- Effect of increased operating pressure on SO₂ solubility and electrolyzer performance
- Tradeoff study on operating pressure/temperature and sulfuric acid concentration; flowsheet optimization
- Verification of improved SO₂/O₂ separation design
- Integration with SI-developed acid decomposition system

Response to Previous Year Reviewers' Comments

- Not Applicable
- This is the first year this project has been reviewed

Milestone Status and Project Issues

Milestones

- Test Plan for Small Single Cell
 Electrolyzer(M3) 3/1/05 (Completed)
- Conceptual design for HyS including efficiency estimate(M3) -4/1/05 (Completed)
- Characterization Testing of H20-SO2
 Electrolyzer(M2) 8/1/05 (On Schedule)
- Design Small Single Cell Pressurized Electrolyzer(M3) – 9/15/05 (start 6/1/05)

Issues

FY06 funding needs to be substantially increased for this process to be ready for the pilot plant decision by end of FY08

Total FY05 Funding = \$300 K

Future Plans

FY05 Second Half

- Assemble test facility and initiate shakedown testing
- Baseline testing with water followed by water/SO₂
- Characterization testing with various sulfuric acid concentrations and operating temperatures
- Duration testing up to 100 hours
- Prepare pressurized electrolyzer design

FY06 Proposed

- Design and construct pressurized (20 bar) electrolyzer and test facility
- Perform system analysis and flowsheet improvements

Publications and Presentations

- 1. W. A. Summers, "Hybrid Sulfur Thermochemical Process", DOE Office of Nuclear Energy, Science and Technology, Semi-annual Program Review, Washington, DC, September 21, 2004.
- 2. M. R. Buckner, "Hybrid Sulfur Thermochemical Process", DOE Office of Nuclear Energy, Science and Technology, Semi-annual Program Review, Washington, DC, March 10, 2005.
- 3. M. R. Buckner et al, "Conceptual Design for a Hybrid Sulfur Hydrogen Production Plant", prepared for DOE Office of Nuclear Energy, Science and Technology under appropriation AF38, Nuclear Hydrogen Initiative, Savannah River National Laboratory Report No. WSRC-TR-2004-00460, April 1, 2005.
- 4. M. B. Gorensek, W. A. Summers and Mr. R. Buckner, "Conceptual Design for a Hybrid Sulfur Thermochemical Hydrogen Process Plant", AIChE Spring 2005 National Meeting, Atlanta, GA, April 13, 2005

Hydrogen Safety

The most significant hydrogen hazard associated with this project is:

The wide range of flammability limits for hydrogen in air, from 4% by volume to 74.5% by volume. Hydrogen leaks from a poorly designed experiment could cause an invisible flame, deflagration or even detonation, potentially resulting in personnel burns or equipment damage.

Hydrogen Safety – Our approach to deal with this hazard is:

- SRNL requires that all laboratory work be reviewed using the copyrighted SRNL Conduct of R&D Manual. This process includes performing hazard assessments and mitigation analyses prior to the start of any laboratory work.
- Specific procedures for this project include:
 - 1. Operate in a well ventilated chemical hood that will maintain the hydrogen concentration well below the lower flammability limit, even with an equipment failure.
 - 2. Use components and piping rated for the pressure.
 - 3. Work with a hydrogen production rate of only two grams per hour.
 - 4. Operate using a detailed and peer reviewed Work Instruction.
 - 5. Always have at least two people present in the laboratory when work is being performed that has the potential to release hydrogen.
 - 6. Restrict access to the laboratory with a door lock and restrict access to the hood area with a railing.

