Novel Hydrogen Screw Compressor

C. David Livengood & Robert P. Larsen Argonne National Laboratory May 25, 2005

This presentation does not contain any proprietary or confidential information

Project ID # PDP53

Project Overview

- Barriers Addressed

 Reliability and Costs of Hydrogen Compression
- Technical Targets (Refueling Sites)

	<u>2010</u>	<u>2015</u>
 Reliability (%): 	90	99
 Energy Efficiency: 	95	96
 Contamination: 	Reduced	None
 Cost Contribution (\$/gge): 	0.40	0.25

Project Overview (cont.)

Partners

 Sigma Engineering, Rochester, Michigan; developer and holder of key design and manufacturing patents

Budget

- FY04 Funding: 0
- FY05 Funding: \$50K (initial phase)
- Total Project Funding: TBD

• Timeline

- Project Start: October 2004
- Project End: September 2005 (initial phase)
- Total Project Duration: TBD

Project Objectives

• Initial Phase:

- Evaluate the feasibility of adapting a novel singlescrew compressor concept for hydrogen compression
- Identify key development requirements
- Provide recommendations for follow-on R&D
- Follow-on R&D
 - Optimize compressor design for hydrogen
 - Reduce/eliminate lubrication through advanced materials and coatings
 - Design and test prototype compressor

Approach (initial phase)

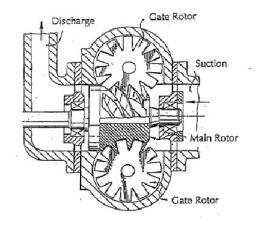
- Identify potential compressor applications
 - Hydrogen production
 - Transmission
 - Fueling systems
- Establish performance criteria
- Evaluate compressor potential for identified applications
 - Application of existing models
 - Engineering assessment

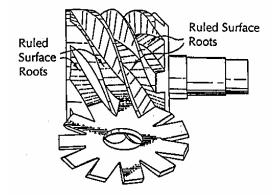
Approach (follow-on)

- Optimize design for hydrogen service
- Reduce/eliminate lubricant requirements through advanced materials and coatings
- Develop prototype compressor design and cost analysis
- Construct and test prototype compressor in collaboration with industrial partner

Earlier Studies Identified Areas for Fueling System Improvement

- Experience with CNG has shown that compression is the major cost component in a gaseous fueling system.
 - Estimate for 75 bus transit system:

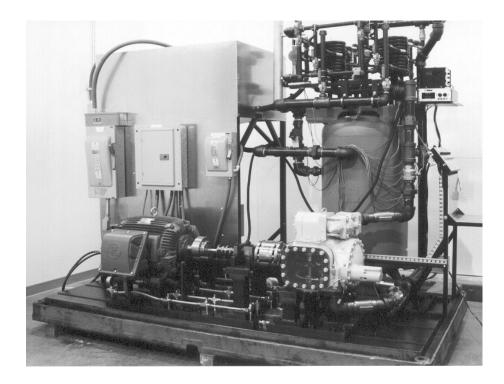

 Compressors 	\$1,200K
 Storage 	90K
 Dispensers 	150K
 Dryer 	120K
 Enclosures 	200K
 Other equipment 	60K
 Installation 	750K
 Total 	\$2,570K

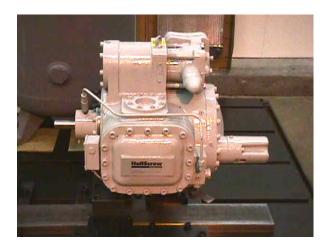

Benefits Anticipated for the Single-Screw Compressor Are:

- Capital cost savings of 1/3 to 1/2 over current gas compressor technology
- Low noise and vibration (all rotary motion)
- Reduction in number of compressor stages
- Use of direct motor drive and higher rpm
- Ease of service in the field
- Design and manufacturing method easily adapted to a variety of applications and sizes

Key Improvements on the Single-Screw Concept Include:

• Patented design changes that greatly ease the manufacturing process





 A new manufacturing process that allows much greater versatility in design and size of components

Tests Validated the Design and Production Process

 Test stand constructed and a commercial compressor of the older design was installed.

Tests (cont.)

• New internal components were produced using the patented design and method

Tests (cont.)

- The complex geometry of the components was shown to be correct
- The rapid manufacturing process worked as predicted
- Internal clearances were reduced and more consistent
- Compressor performance was equivalent to or improved over original

Progress in Current Project

• A performance model for a similar compressor design has been identified and is being evaluated for applicability.

Future Plans

• Remainder of FY05

- Identify potential compressor applications and technical requirements
- Model compressor performance
- Develop recommendations for follow-on research and development program

Future years

- Optimize compressor design for hydrogen
- Apply advanced coatings technology for sealing
- Develop prototype design and cost estimate
- Build and test prototype compressor

Publications and Presentations

1. Livengood, C.D., and R.P. Larsen, *Novel Hydrogen Screw Compressor*, poster presentation at 2005 DOE Hydrogen Program Review, Arlington, Virginia, (May 23-26, 2005).

Hydrogen Safety

There are no hydrogen hazards associated with the initial phase of this project. Follow-on research and development will require a safety analysis at a later date.