

IEA Hydrogen Task 18: Evaluation of Integrated Demonstration Systems

Susan Schoenung Longitude 122 West, Inc. May 25, 2005

This presentation does not contain any proprietary or confidential information

Project ID #SAP1

Overview of IEA Integrated Systems Project (Task 18)

Timeline

- Project start date: January 1, 2004
- Project end date:
 - December 31, 2006
- Percent complete: ~44%

Barriers Addressed from MYPP

- To safety, codes and standards
 - Conflicts between domestic and international C&S
- To systems analysis
 - Lack of consistent data, assumptions and guidelines; lack of consensus on modeling tools
- To tech validation
 - Inadequate integrated infrastructure system experience; lack of validated data

Budget

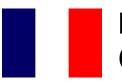
- Total project funding
 - DOE share: \$450K
 - Contractor co-share: contributed labor (~\$50K)
 - International partners: 18 FTE
- Funding received in FY04: \$98K
- Funding for FY05: \$107K

Partners / Collaborators

- International Energy Agency, Hydrogen Implementing Agreement
 - Task 18 members:
 - Eleven countries
 - European commission
- Sandia National Laboratory (Lutz)
- Los Alamos National Laboratory (Padró)

Participants of IEA Hydrogen Task 18

Canada **Natural Resources Canada**



Japan **AIST Laboratory**

Iceland **Icelandic New Energy**

France CEA

Spain INTA

Sweden **Sydkraft**

Viited Kingdom EA Technology

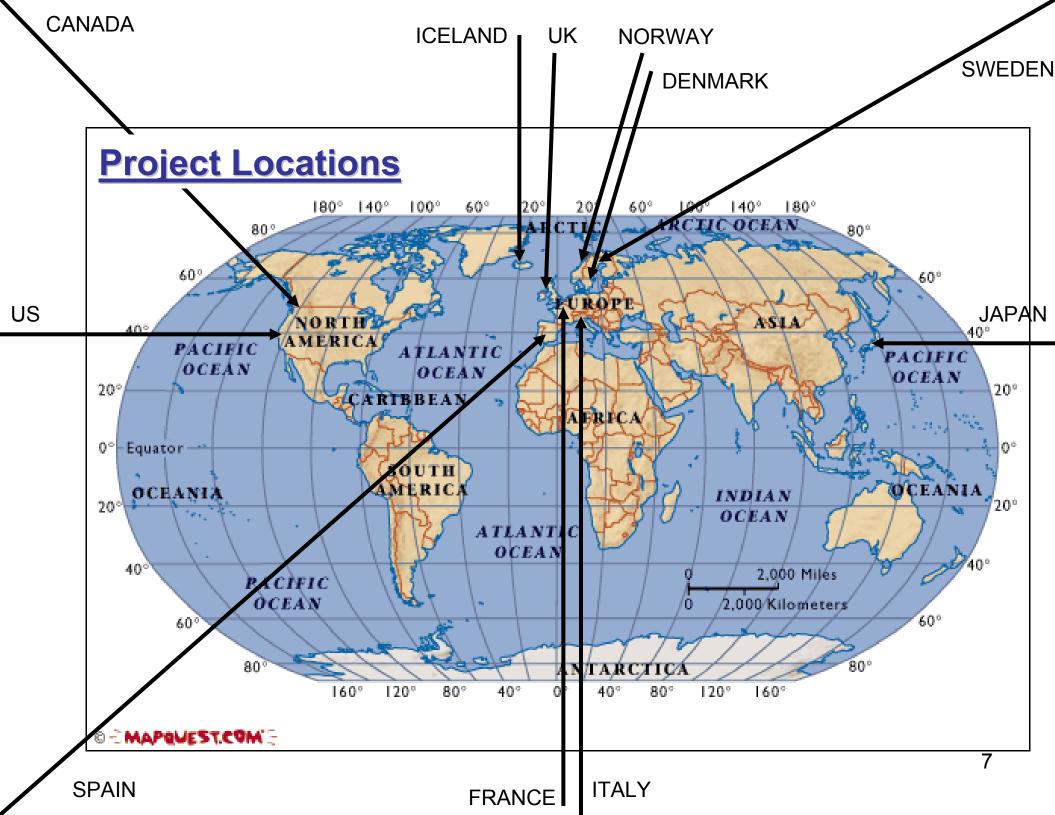
United States Department of Energy

Denmark Gas Technology Center

Objectives of IEA Hydrogen Task 18

- 1) To use modeling and analysis tools to evaluate hydrogen demonstration projects. Focus is on lessons learned and providing design guidance for future projects.
- 2) To develop information datasets and compiled summaries of <u>integrated</u> hydrogen system demonstrations and development plans. Focus is on determining patterns and the evolution of trends from lessons learned.
- 3) To participate in Hydrogen Resources Study: "Where will the hydrogen come from?"

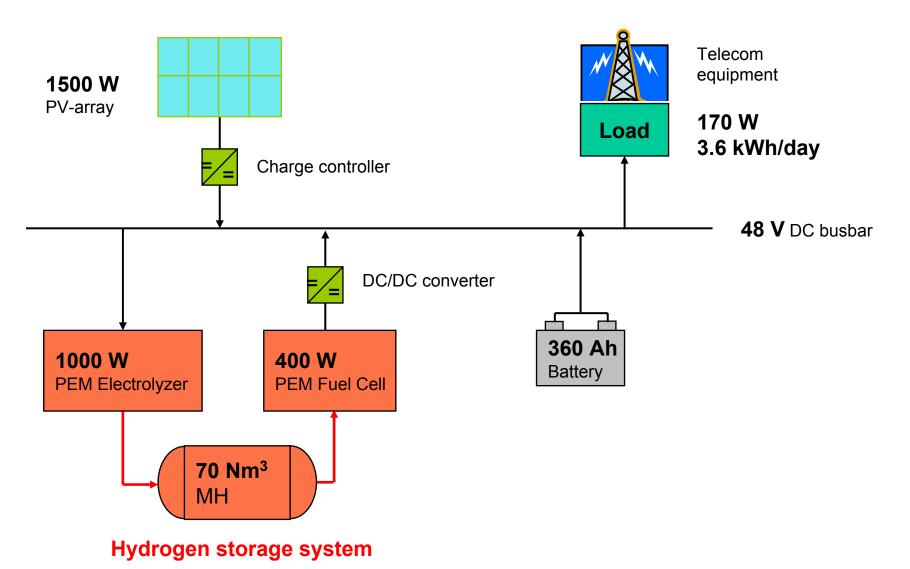
Approach => Collaboration


- Members of IEA Hydrogen Implementing Agreement Task 18 work collaboratively within two subtasks:
 - Subtask A: Information Base Development
 - Subtask B: Demonstration Project Evaluation
- U.S. DOE Sponsors the Operating Agent; Subtask Leaders are sponsored by Canada and Norway, respectively
- Subtask A: Members Responsibilities:
 - Deliver to searchable web portal national studies and requested data
- Subtask B: Members Responsibilities:
 - Work as a group to establish a list of desired data for each project
 - Bring to the group data from that country's project
 - Clarify with the data provider any limitations on data release or use
 - Make use of appropriate modeling & analysis tool for selected projects
 - Provide assessments & evaluations of the project based on the analysis results
- Members/experts meet twice per year to review progress; ongoing collaboration is carried out electronically
- Members deliver progress reports annually

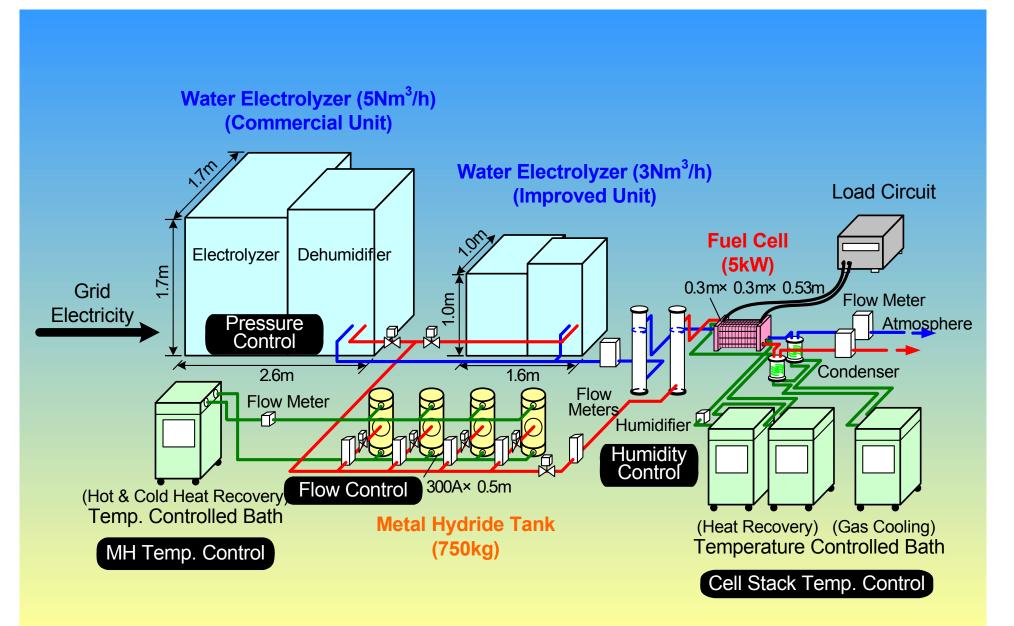
Technical Accomplishments/ Progress/Results

• Subtask B: Analysis of 8 demo projects completed or underway:

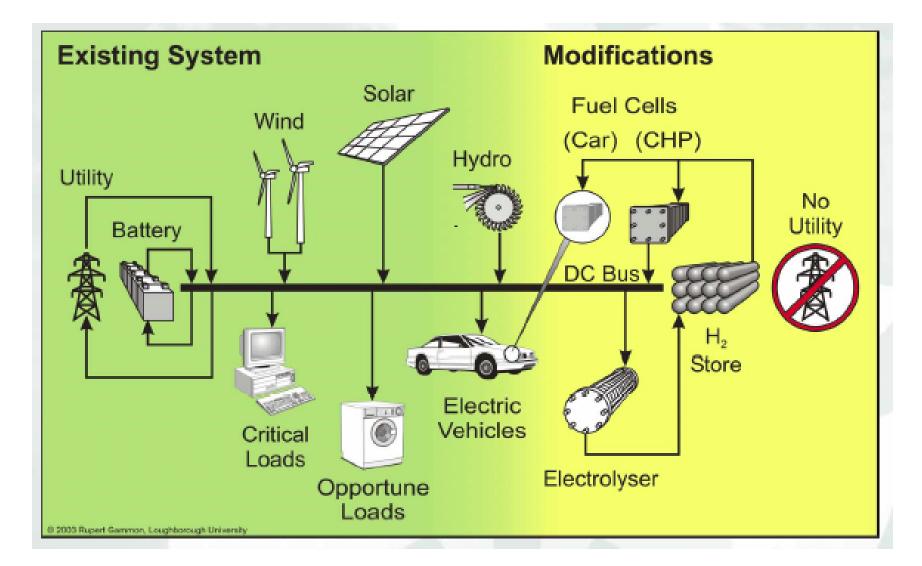
- UK


- Spain
- Sweden Japan (2)
- Iceland US
- Canada
- All assessments include documentation of safety, codes and standards
- Subtask A: Database contains 83 documents, analysis in progress
- Case studies: 3 completed within the last year
 - California Fuel Cell Partnership (US)
 - Compressed Hydrogen Infrastructure Project (Canada)
 - Fuel Cell Innovative Research System for Telecommunication (Spain)
- Hydrogen resources study in progress:
 - "Where will the hydrogen come from?" (in Collaboration with Padró/LANL)

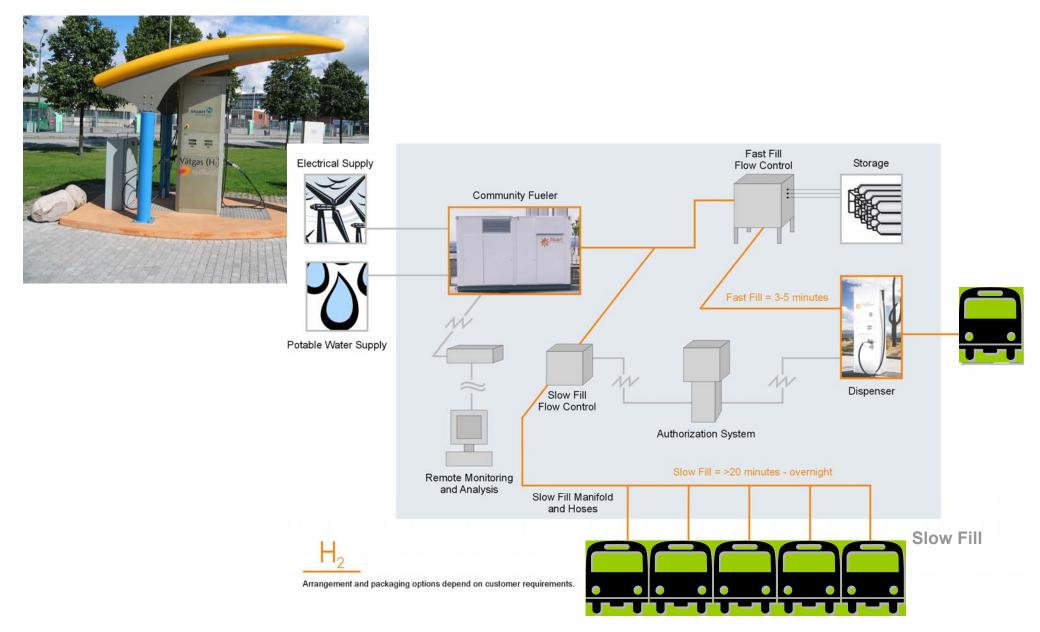
Subtask B: Systems Being Assessed


#	Description	Renewables - based	Fossil (NG) - based	
1	Grid-connected power systems	\checkmark	\checkmark	
2	Refueling stations	\checkmark	\checkmark	
3	Combinations of 1 & 2		\checkmark	
4	Stand-alone power systems (SAPS) & Special applications	\checkmark	8	

PV/ H₂ Telecom System, Madrid, Spain


Evaluation status: Model complete, sensitivity studies in progress

Integrated H₂ System, Atsugi, Japan


Evaluation status: Data collection in progress, analysis to come

Hydrogen and Renewables Integration (HARI) Project - UK

Evaluation status: Data acquisition in place, modeling tools in development 11

H₂ Refueling Station, Malmö, Sweden

Evaluation status: Data analysis complete, sensitivity studies in progress 12

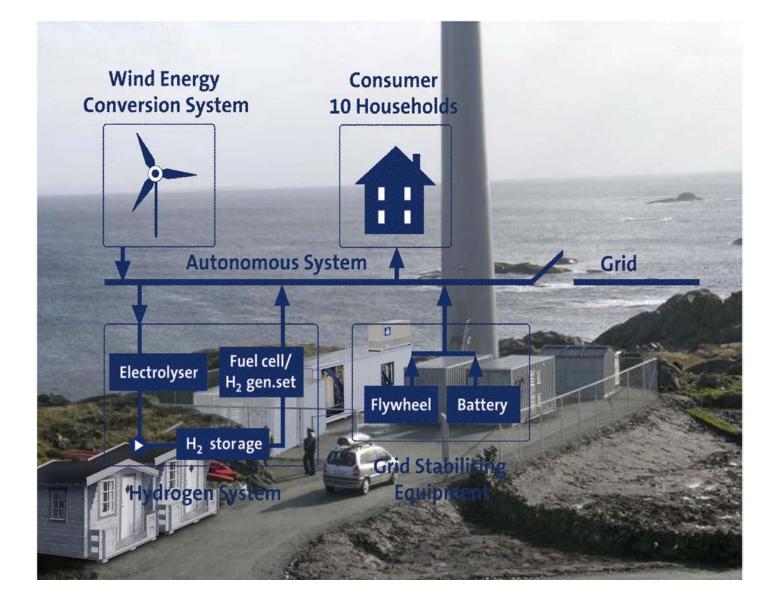
H₂ Energy Station, Las Vegas

Evaluation status: Safety analysis complete, additional data unavailable 13

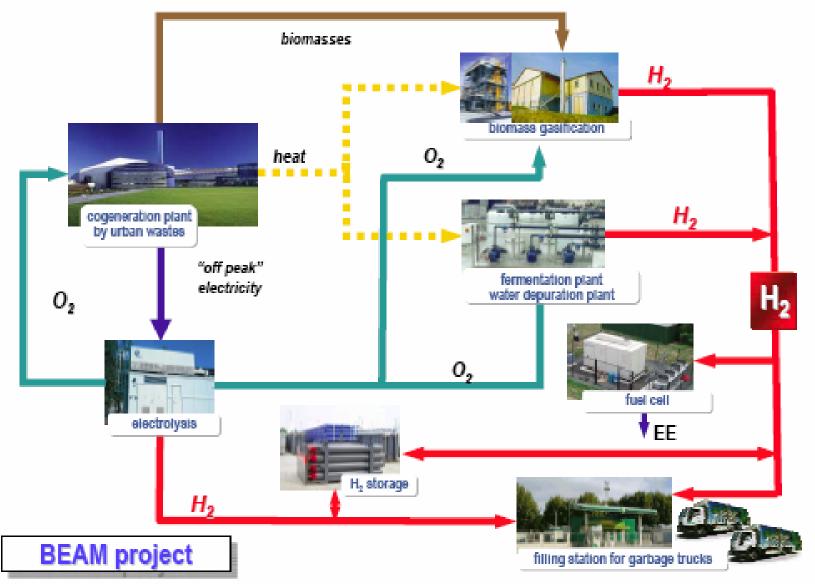
H₂ Fueling Station, Reykjavik

Evaluation status: Data collection complete, performance analysis scheduled 14

Pacific Spirit Station, Vancouver


- Located at the National Research Council's Institute for Fuel Cell Innovation on the campus of the University of British Columbia
- Integral part of Hydrogen Highway
- Participants include;
 - General Hydrogen
 - BOC
 - Fuel Cells Canada
 - Natural Resources Canada
 - National Research Council
- Operational now Spring 2005

Evaluation status: Data gathering in progress, modeling planned



Renewable H2 Project, Utsira, Norway

Evaluation status: Planning for Phase 2

Italian BEAM Project - Power and Fuel from Urban Waste

Evaluation status: Planning for Phase 2

Two Basic Types of System Studies / Documentation

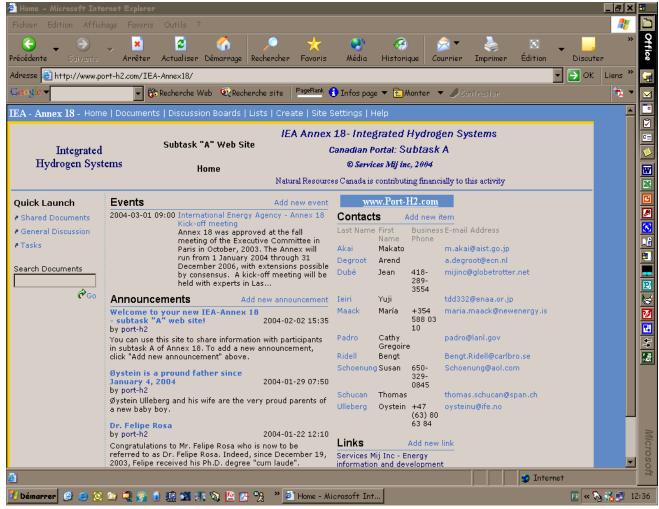
I. H₂-refueling stations

- 1. Future scenario/sensitivity study (Malmö)
- 2. Overall system performance study (Reykjavik)
- 3. Overall system performance study (Vancouver)
- 4. Comparative study of refueling station experience (Reykjavik, Vancouver, Malmö, & others: Japan, Singapore, Las Vegas?)
- II. Integrated RE/ H₂-energy systems
 - 1. Detailed technical system performance study (Japan)
 - 2. General technical system performance study (Spain)
 - 3. Techno-economic system design study (UK)
 - 4. Future (Italy, Norway, New Zealand?)

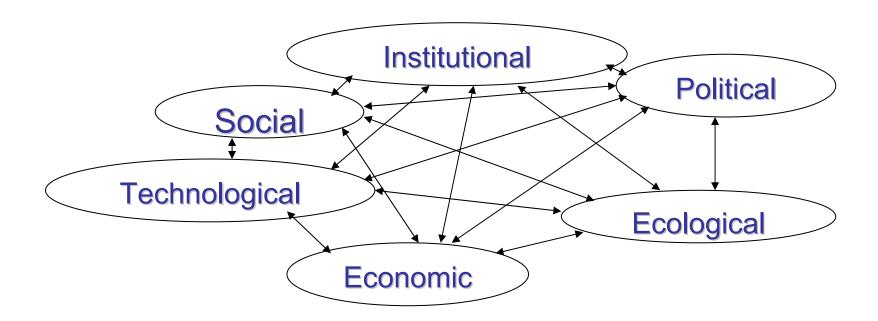
Models for Evaluation and Design Guidance

- 1. Time series simulations (η is calculated)
 - Dynamic performance
 - Detailed system design & controls $\sqrt{}$
- 2. Steady-state approximations (η is provided)
 - General system design
 - H₂-energy pathway studies
- 3. Economic calculations
 - Cost of energy $\sqrt{}$
 - Based on capital, O&M, and estimated lifetimes
- 4. Environmental damage calculations (LCA)
 - Material & energy usage, emissions over system lifetime
- 5. Combinations of the above

Time Series Modeling Basic Data Requirements


- Inputs (forcing functions)
 - RE-source (e.g. solar radiation, wind speeds)
 - Electrical and/or thermal energy load profiles
 - Other forcing functions (e.g., H₂-refueling station duty cycle)
 - Minimum resolution on data: hourly values
- Parameters System Specifications
 - Rated powers, H_2 -flow rates, etc.
 - Max. or min. temperature, pressure, etc.
 - Cells in series per stack, stacks in series per unit, etc.
 - Minimum requirement: clearly defined system
- Parameters Component characteristics
 - *IU*-curves
 - *PCT*-curves
 - η -curves
 - Minimum requirement: Tables with numerical values
- Other vital items
 - Information on control strategy (including start-up regimes, idling and/or on/offswitching of components)
 - Minimum requirement: Schematic of overall control strategy

Subtask A: Information Base Development


- National plans
- Demonstration progress
- Hydrogen resources
- Vendors
- Utilization rates
- Geographic information
- Refueling projections
- Costs
- Infrastructure
- Codes and Standards
- Economic analysis

Annex 18 website: Searchable portal

Information Base Development -Progress

- Initiated the definition of a structure for the proposed Information Base: Technology, Market and Supply chain.
- Participants took a step back from the usual technological viewpoint and considered the possibility to document "hydrogen" in consideration of the hydrogen energy Macroenvironment and determined that Subtask "A" would perform a Monitoring (What is going on ?) function.
- 83 documents from 11 countries being analysed for priorities and trends; additional documentation anticipated.

Task 18 Milestone Schedule

	2004			2005		2006	
Expert Meetings	КО	F04	S05		F05	S06	F06
Subtask A							
Data plan and format		Х					
Initial summaries			Х				
Updated summaries					Х		Х
Draft and final report						Х	Х
Hydrogen Resource				Х	Х		
study - input							
Subtask B							
Case Studies		XX	ΧХ	X	Х	Х	Х
Project selection	Х						
Tools operational		Х					
Data gathering	on	going		ongoing	3		
First demo evaluation			Х				
Second demo evaluation					Х		
Third demo evaluation						Х	
Final summary report							Х

23

Future Work: Plans for 2005-2006

Technical progress plans

- Draft input to Hydrogen Resources study due by end of May; final by September
- Telecom system analysis, Malmö sensitivity studies and Iceland refueling station performance analysis all due by end of 2005
- Data gathering on Japan project, Vancouver refueling station and HARI project ongoing through 2005 for analysis in 2006
- Comparative assessment of refueling station experience draft due spring of 2006
- ECTOS Case Study to be completed in 2005, HARI in 2006

Management plans

- Task Experts meet twice per year; fall 2005 meeting is scheduled for Iceland in September; spring 2006 meeting is planned for Vancouver in March
- •Operating agent meets twice a year with Executive Committee; fall 2005 meeting planned for Singapore in September
- •Semi-annual reports due in September and April, annual in December

Supplemental Slides

Publications and Presentations

- 2004 NHA Conference Poster
 - Schoenung, Susan. "Hydrogen Integrated Systems Modeling and Analysis for the International Energy Agency"
- 2004 Windsor Workshop Presentation
 - Dubé, Jean, and Susan Schoenung. "International Energy Agency Hydrogen Implementing Agreement; Task 18 - Integrated Systems Evaluation"
- 2004 Australian Hydrogen and Fuel Cells Conference paper and presentation
 - Ulleberg Ø. and R. Glöckner. "Development of Renewable Energy/Hydrogen Systems: From Concepts to Actual Demonstrations." Hydrogen and Fuel Cells Futures Conference, Perth, 12-15 September 2004.
- H2004 Workshop Presentation
 - Ulleberg, Øystein. "IEA H2 Annex 18: Integrated System Evaluations." Murdoch University, 16-17 September, 2004.
- Las Vegas Energy Station safety study
 - Skolnick, Ed. "Site Visit Report: The Las Vegas Hydrogen Energy Station"
- Case studies (Available on IEA Hydrogen Implementing Agreement website: http://www.ieahia.org/case_studies.html)
 - Gromis, Adam, and Thomas Schucan. "California Fuel Cell Partnership."
 - Wong, Joe, and Thomas Schucan. "Compressed Hydrogen Infrastructure Program."
 - Argumosa, Maria de Pilar, and Thomas Schucan. "Fuel Cell Innovative Research System for Telecommunications."
- Public Website: www.port-h2.com/IEA-Annex-18/

Hydrogen Safety

The most significant hydrogen hazard associated with this project is:

➤The modeling and analysis work associated with this project do not pose any hydrogen safety hazards.

Our approach to deal with this hazard is:

>Each demonstration project applies local safety regulations and codes and standards, which are being documented for each project. Dealing with the hazard is out of scope.