Development of New Carbon-Based Sorbent Systems for an Effective Containment of Hydrogen

Alan Cooper and Guido Pez Air Products and Chemicals, Inc. 5/24/05

This presentation does not contain any proprietary or confidential information

ST-14 products **1**

© Air Products and Chemicals, Inc. 2005

Overview

Timeline

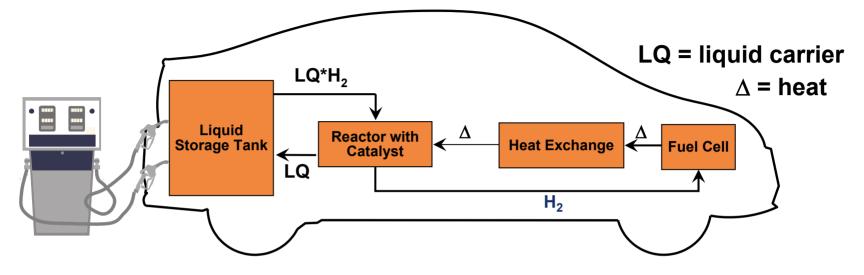
- 2/04 2/07
- 40% complete

Budget

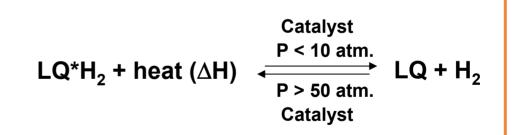
- Total project \$6,121,279
 - DOE share \$4,346,108 (71%)
- FY04 funding \$771,000
- FY05 funding \$812,000

Partners

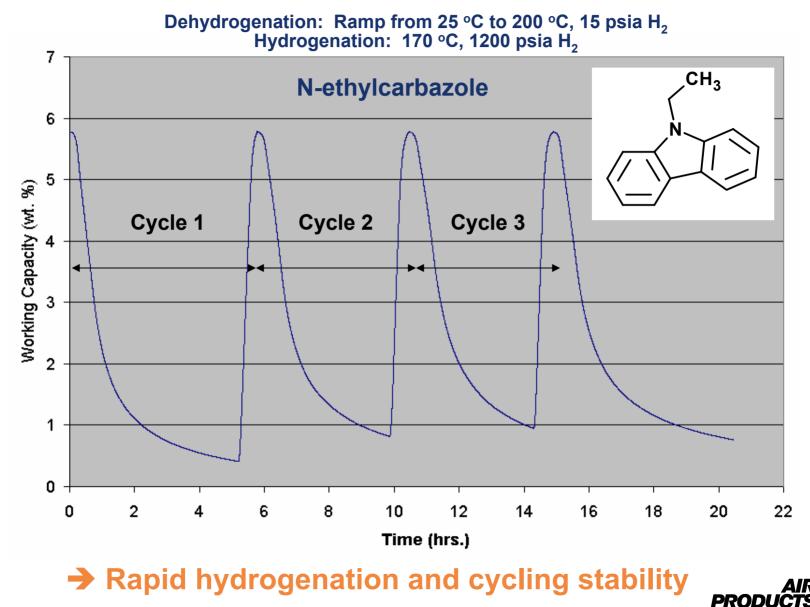
Barriers


- Technical Barriers- Hydrogen Storage
 - A. Cost
 - B. Weight and Volume: 4.5 wt. % and 36 g H₂/L (2005), 6.0 wt. % and 45 g H₂/L (2010)
 - C. Efficiency
 - E. Refueling time
 - **R.** Regeneration Processes
 - S. Byproduct Removal
 - T. Heat Removal
- Current interactions: automobile OEM's, start-up companies
- Anticipated interactions: LANL chemical hydrides COE, catalyst companies

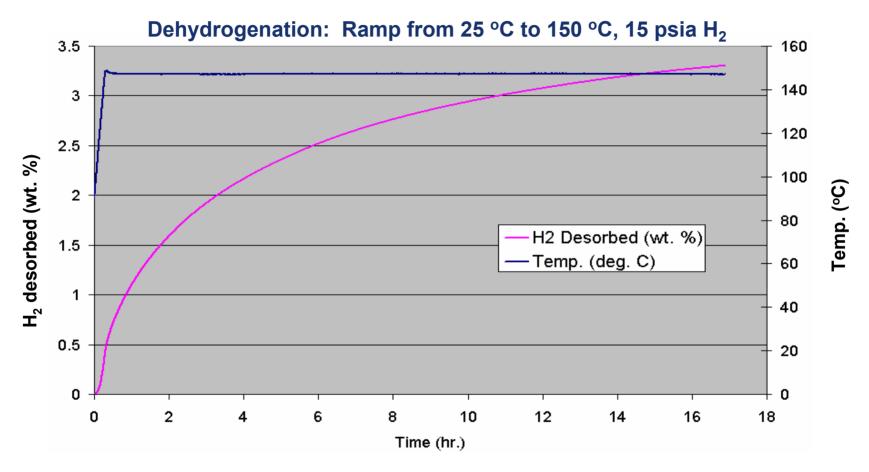
Objectives


- Discovery of new, reversible liquid carriers for hydrogen storage and associated dehydrogenation / hydrogenation catalysts. Scale up of liquid carriers for further evaluation.
 - Selective, highly reversible catalytic hydrogenation and dehydrogenation, enabling multiple cycles of use with no significant degradation of the molecule - barriers R, S
 - Optimal heat of dehydrogenation (10-13 kcal/mole H₂), enabling the catalytic dehydrogenation at unprecedented temperatures (<200 °C) – barriers B, C, T
 - Low volatility (b.p. > 300 °C), enabling the use of these liquids in simplified systems onboard vehicles and reducing exposure to vapors – barriers E, S
 - Low toxicity and environmental impact barrier R
 - Acceptable cost for the liquid carrier and the hydrogenation process – barrier A
- "Ionic solids" for storage of hydrogen by physical adsorption
- Development of carbon-based solid and liquid hydrogen storage materials with capacities of >6 wt. % and >45 g H₂/L

Approach: An off-board regenerable liquid carrier for vehicles and stationary H₂ gas delivery

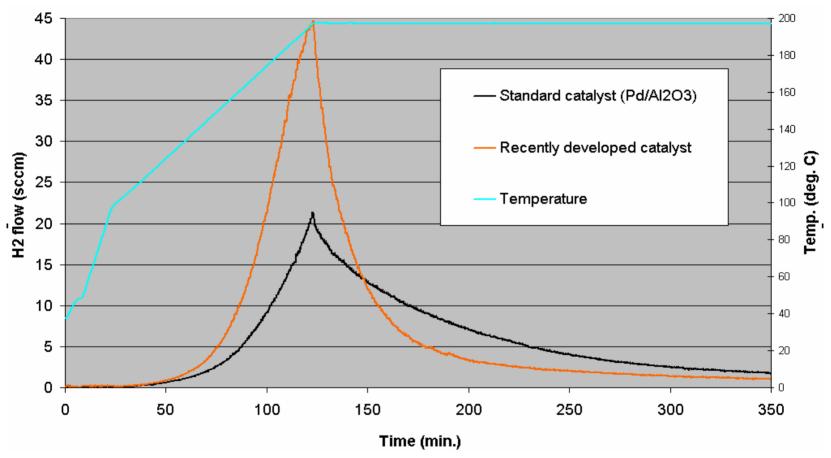

- Conformable shape liquid tank with design to separate liquids; 22.5 gallons for 5 kg hydrogen at 6 wt. % and unit density
- Heat exchange reduces the vehicles' radiator load by ca. 40% (for ∆H of 12 kcal/mol H₂ and 50% FC efficiency)

Maximum energy efficiency: by (a) recovering the exothermic (- Δ H) of hydrogenation and (b) utilizing the waste heat from the power source to supply the Δ H for the endothermic dehydrogenation.



Results: Cycling Studies

© Air Products and Chemicals, Inc. 2005


Results: Low Temperature Dehydrogenation

→ Met year 1 performance milestone (3 wt. % at 150 °C); but slow catalytic dehydrogenation rate at 150 °C

Results: Higher Dehydrogenation Catalyst Activity

Over 40 catalysts screened in last 3 months

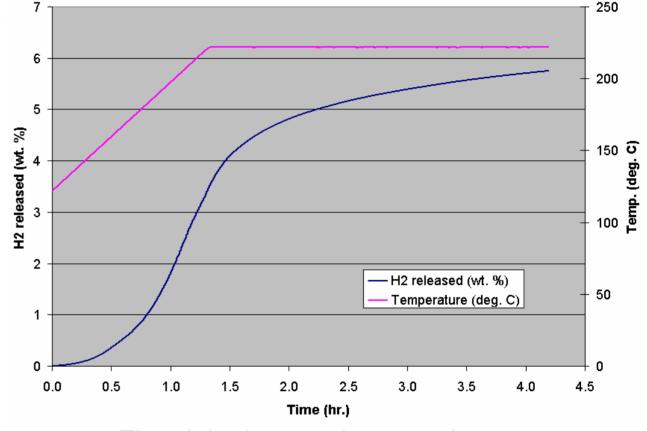
Base metal and precious metal catalysts

Results: Typical H₂ Purity from **Dehydrogenation Experiments**

Component	Mole %	
Hydrogen	99.9+	
Methane	0.0013%	
Ethane	0.0083%	
Carbon Monoxide	ND	
Amines	ND	
C3's	ND	
C4's	ND	
C5's	ND	
C6's	ND	

ND – Not Detected

- Hydrogen purity from N-ethylcarbazole dehydrogenation runs determined by mass spectroscopy
- Detection limits <10 ppm for all species in table
- Recent results suggest that methane and ethane may arise from trace impurities in N-ethylcarbazole


Results: New Liquid Carrier Development

Liquid Carrier	Positive Attributes	Performance Issues
	1) Liquid at all stages of hydrogenation	1) Cycling stability
	2) Synthesis from low- cost raw materials	2) Maximum hydrogen
H_3C' R N CH_3	3) Extremely low volatility (b.p. >420°C)	capacity
R = H, CH ₃ Bis-indolyImethane	4) Heat of dehydrogenation (<i>ca.</i> 12.5 kcal/mol)	
	1) Heat of dehydrogenation at	1) Clean catalytic hydrogenation
H ₃ C	favorable low end of appropriate range (10.5 kcal/mol)	2) High melting point
Indolocarbazole	2) Extremely low volatility	

Results: New carrier data

- Recent discovery of a new carrier with 6.9 wt. % H₂ capacity (potential)
- Initial testing confirms selective hydrogenation and dehydrogenation
- Heat of dehydrogenation in appropriate range (10-13 kcal/mol H₂)

First dehydrogenation experiment

Results: Adsorption of H₂ by novel porous ionic solids

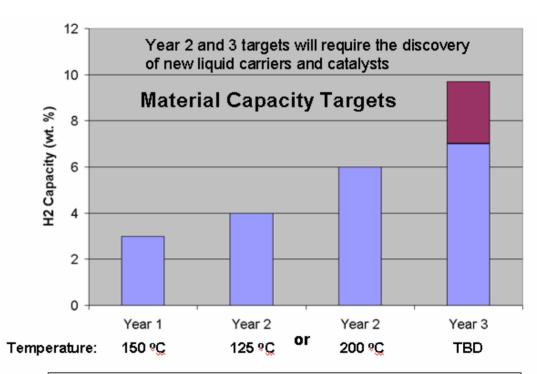
- Computational modeling has identified a specific ionic solid composition with strong physisorption of H₂
 - At a loading of 6.76 wt. % H_2 , the ΔE (at 25°C) is -5.07 kcal/mole H_2
- Computational work (*abinitio* DFT molecular dynamics) completed FY 04
- Satisfied technical criteria for go decision at end of FY04

Summary: Technical Accomplishments/ Progress/Results

- Liquid carrier discovery effort
 - Several promising carriers
 - New carrier with capacity of 6.9 wt. % and >60 g H_2/L (est. density of 0.9 g/cc)
- Increased dehydrogenation catalyst activity by 100% through screening and development effort
- Demonstrated high H₂ purity (99.9+%, no CO or amines)
- Demonstrated cycling stability for N-ethylcarbazole (7 cycles with no degradation observed by GC/MS analysis)
- FY04 milestones (>3 wt. % at 150°C) met on time
- Progress towards FY05 milestones on track

Dehydrogenation Video Clip

Responses to Previous Year Reviewers' Comments


- 1) No technical details for liquid carriers or catalysts disclosed
 - We have now disclosed technical details of liquid carrier compositions and catalysts
 - Two public presentations and papers (American Chemical Society national meeting 3/05; National Hydrogen Association 3/05)
- 2) Economic feasibility of liquid carriers?
 - We disclosed an preliminary economic evaluation at the FY04 DOE Hydrogen Program review (not funded by DOE)
 - A comprehensive economics study is planned as part of the new, complementary project: "Reversible Liquid Carriers for an Integrated Production, Storage & Delivery of Hydrogen" (G. Pez, PD-34, tomorrow afternoon in H₂ delivery session)

Future Work

Development and testing of new liquid carriers:

- optimal heats of hydrogenation
- increase hydrogen capacity
- modify substrate melting points (eg. by the use of mixtures of multiple substrates)
- Development of new dehydrogenation catalysts:
 - increase rates at low temperatures
 - selective dehydrogenation

Design and development of dehydrogenation reactors and FC/ICE heat integration are critical to understanding the system weight and volume

Publications and Presentations

Presentations:

- Presentation to FreedomCAR Hydrogen Storage Tech. Team (2/05)
- Hydrogen Storage and Delivery by Reversible
 Hydrogenation of Liquid-phase Hydrogen Carriers (invited presentation) American Chemical Society national meeting (3/05)
- The "Non-Hydrogen" Approach to Hydrogen Storage National Hydrogen Association annual conference (3/05)
- Publications:
 - A.C. Cooper, L.D. Bagzis, K.M. Campbell, and G.P. Pez: Hydrogen Storage and Delivery by Reversible Hydrogenation of Liquid-phase Hydrogen Carriers. *Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem.* 50, 271 (2005).
 - K. Campbell, A. Cooper, G. Pez: The "Non-Hydrogen" Approach to Hydrogen Storage. NHA Annual Hydrogen Conference Proceedings (2005).

Hydrogen Safety

- The most significant hydrogen hazard associated with this project is: hydrogenation of liquid carriers
 - overpressure and over-temperature scenarios
- Liquid carriers are hydrogenated in our laboratories at scales ranging from 4 – 5000 cc/batch
 - Hydrogen pressure typically 700-1200 psia
 - Heat of hydrogenation (exothermic) must be removed from hydrogenation to prevent overheating – most relevant at large scale

Hydrogen Safety

Our approaches to deal with this hazard are:

- Detailed Design Hazard Review (DHR) for all hydrogenation operations – with signoff from EH&S personnel
- Engineering controls
 - Overpressure relief devices (i.e. rupture discs)
 - Hydrogen monitors for leak detection
 - Linked to reactor control for automatic shutdown in the event of a hydrogen leak from the reactor
 - Over-temperature shutdown
 - Linked to reactor control for automatic shutdown in the event of a temperature excursion
 - Use a second, independent thermocouple from temperature controller

