Sub-Nanostructured Non-Transition Metal Complex Grids for Hydrogen Storage

Orhan Talu Cleveland State University May 23, 2005

Project ID # ST7

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Project start date: 1/20/04 (contractual) April 2004 (actual)
- Project end date: 1/19/07
- Percent Completed: 30 %

Budget

- Project funding: \$1,201,862
 - DOE share: \$ 959,317
 - Contractor share: \$242,545
- Funding received in FY04: \$310,407
- Funding for FY05: \$ 190,000

Overview (con.)

- DOE On-Board Hydrogen Storage Barriers
 - -C. Efficiency
 - -D. Durability
 - -E. Refueling Time
 - -M. Hydrogen Capacity and Reversibility
 - -N. Lack of Understanding of Hydrogen Physisorption and Chemisorption

Partners

- Steven M. Kuznicki, U. of Alberta; zeolite chemistry
- Suha Yazici, Graftec; electrochemistry
- David Sholl, Carnegie Mellon U.; computational (pending)

OBJECTIVE

- To develop the techniques to make nanostructured continuous threedimensional metal alloy grid for hydrogen storage
- To make and characterize the grids for state-of-art alloys

TECHNICAL APPROACH

- 1. Use nanoporous (e.g. zeolite) templates as mold on cathode
- 2. Electrodeposit metals in the pores to grow nanostructured grids
- 3. Dissolve the mold and recover the metal grid

WHY NANOSTRUCTURE ?

► Large surface area <u>increase H₂ dissociation rate</u>

Smaller diffusion distance increase H-transport rate in metal

≻Flexible/open structure <u>decrease decrepitation by cycling</u>

Energy release/absorption & mass/energy transfer throughout matrix <u>improve heat transfer characteristics</u>

≻Large surface area increase storage capacity by physical adsorption

➢ Possible Increase in capacity by quantum effects ? (30-50 atom clusters)

Increase dynamic hydrogen uptake !

Example: Mg grown in faujisite

Cubic superlattice; a=2.4 nm

Characteristic length (pore or solid); L = 1nm

Porosity; $\epsilon = 0.5$

Surface area; τ = 500 m²/gm

Expected improvements

Base case: 1 mm solid metal particle

	Comment		Increase	
H ₂ dissociation rate	scales with 1/L		10 ⁶	
H diffusion rate	scales v	s with ε/L ().5x10 ⁶
Energy flux in metal	k(1-ε)δ ² T/δx ² conduction lower ε	(εDδC/δx)*C (mass flux)*e additional,	₀δ∆T/δx enthalpy small	r ^s (∆H+C _p ∆T) <i>reaction</i> additional, large
Physical adsorption	Scales with 1/L		10 ⁶	

ISSUES/QUESTIONS

• Volumetric capacity reduced by a factor of ϵ compared to bulk metal

• Will the metal sinter during cycling?

TASKS

YEAR: 1 2 3

- 1. Mold/Cathode preparation
- 2. Pure metal electrodeposition *characterizations*
- 3. Mold removal, grid recovery
- 4. Pure metal hydrogen storage
- 5. Mixed metal electrodeposition *characterizations*
- 6. Mixed metal hydrogen storage

TASK 1: Mold/Cathode Fabrication

Least Attractive

- I. <u>Multicrystal</u> particles <u>compacted</u> on a metallic substrate.
- 2. <u>Multicrystal</u> film of <u>inter-</u> <u>grown</u> crystals in-situ synthesized on a metallic substrate.

- 3. <u>Multicrystal</u> film containing large <u>oriented</u> crystals <u>grown</u> on a metallic substrate.
- 4. Very large single nanoporous crystal grown on a metallic substrate ?

Most Attractive

Electrodeposition in compacted powder

		IN CREVICE		
С	31 at%	C	45 at%	
0	43	0	30.4	
Cu	4	Cu	2.3	
Al	9.9	Al	9.5	
Si	12.6	Si	12.8	

TASK 1.1 Compaction Summary

•Faujisite powder (Si/Al=1.4, 1 μ m particle) exchanged to Cu compacted on Ni mesh used as cathode

•Cu electrodeposited in the pores

•EDX shows Cu enrichment in zeolite crystals

•Cu/Al ratios: 0.51 left (closest to anode), 0.4 top, 0.35 right
•excessive Cu growth in between zeolite particles (like tree roots in stony soil)

electrodeposition in zeolite particles works hard to prevent growth in between particles

Anodized Ti-cathode for in-situ growth

- NaOH treatment at 60 C, cure at 500 C
- TiO_2 is formed (anatase)
- Ti metal is also exposed
- <u>Texture 0.1 to 10 μm, controlled by</u> treatment conditions (0.1 μm shown)

- Purple = TiO_2 (for adhesion of zeolite)
- Blue = Ti metal (<u>for electrical</u> <u>conductivity</u>)

Faujisite growths on anodized-Ti

Same chemistry, different magnification

Two other chemistry's

picked the best adhesion chemistry for electrodeposition

Electrodeposition in synthesized zeolite film

Task 1.2 Anodized Ti + Faujisite + Cu-deposition

- Metal (Ti) is microstructured to TiO₂ to promote zeolite film growth with good adhesion
- Cu is electrodeposited in zeolite pores

- > No Cu growth between particles
- "mushroom" overgrowth will be prevented
- > Need to grow thicker films
- Try also anodized aluminum

TASK 2: Electrodeposition

•Vast electroplating/electrodeposition literature is primarily geared to optimize the <u>uniformity¹</u> of <u>thin</u> $\underline{\text{films}^2}$ on <u>large smooth³</u> cathode surfaces of a <u>different⁴</u> metal.

•We are trying to deposit <u>non-uniform¹</u>, "<u>thick</u>" <u>bulk²</u> metal in <u>small nanopores³ of a non-conducting</u> material. (The cathode/anode conductor can be the <u>same⁴</u> metal.)

Need to fine-tune electrodeposition at nano-scale.

Electrodeposition in track-etched polycarbonate films (PCF)

Commercially available membranes used as cathode mold
Non-conducting polycarbonate "mold" (like zeolites)

- •Pore sizes from 1 μ m, down to 0.015 μ m = 15 nm (150x larger than zeolite pores, <u>hard to scale</u>)
- •Film thickness up to 10 μ m (zeolite crystal size, <u>close</u> scale) •Porosity up to 10% (less than zeolites, <u>easy</u> to scale)

Analyze effects of electrolyte chemistry, deposition conditions, and mold characteristics for electrodeposition at nanoscale

Cu deposit in 10 μm holes of PCF

Solution side at 1,000x

Caps coalesce, diameter closer to 10 μm

Cathode conductor side at 1,000x

No growth on Au coating

Holes in center of deposited Cu suggest inwards growth from walls

Task 2: Electrodeposition fine tuning

PCF as "proxy" to fine tune electrodeposition parameters
Identified controlling radial versus axial growth
Significant effect of pore size

Future

Extrapolate to nanoscale electro deposition (below 15 nm)
 Bring-in H₂ hydride electrochemistry

HRTEM images of faujisite after Cu electrodeposition

- •1 nm lines spaced at 1 nm
- •No such lines in normal faujisite images

(Courtesy of Hitachi High Technologies America)

RESULTS

HRTEM of Cu "mushrooms" grown from nanometer pores

MCM_005.tif MCM Print Mag: 126000x @7.0 in 10:47 03/31/05

100 nm HV=100kV Direct Mag: 50000x AMT Camera System

Next Year Activities

Remainder FY05:

- Multicrystal thicker zeolite grown on metals (Ti and Al)
- Oriented large crystal growth of nanoporous materials on cathodes
- Extrapolation of size effect on electrodeposition
- Switch from Cu to Pd (and Mg?) electrochemistry
- Characterization by HRTEM, STEM, AFM/STM, EDX

Next Year Activities (Con.)

<u>FY06:</u>

- Mold removal, grid recovery and surface area measurements
- Pure palladium (and magnesium?) for hydrogen storage testing
- Mixed metal electrodeposition chemistry

Auxiliary Slides

- Publications and Presentations
- 2 papers under review, 1 presentation scheduled for AIChE Annual meeting in Cincinnati, OH (Nov. 2005)
- The most significant hydrogen hazard associated with this project is:
- The experiments to date did not require hydrogen. Limited uptake rate and equilibrium measurements will be performed in FY06 in our Rubotherm © magnetic suspension balance using small/lab quantities of H2 vented into fume-hood.
- Our approach to deal with this hazard is: (Not applicable)