

Clean Energy Research at the University of South Carolina

Dr. Ralph E. White, PI James A. Ritter, co-PI and Presenter University of South Carolina

May 24, 2005

Project ID #ST9 White

This presentation does not contain any proprietary or confidential information.

Overview

Projects

- <u>Project I.</u> Low Temperature Electrolytic
 Hydrogen Production (Dr. John Weidner)
- <u>Project II.</u> Development of Complex Metal Hydride Hydrogen Storage Materials (Dr. James Ritter)
- <u>Project III.</u> Hydrogen Storage Using Chemical Hydrides (Dr. Michael Matthews)
- Project IV. Diagnostic Tools for Understanding Chemical Stresses and MEA Durability Resulting from Hydrogen Impurities (Dr. John Van Zee)
- Project V. Durability Study of the Cathode of a Polymer Electrolyte Membrane Fuel Cell (Dr. Ralph White)

Timeline

- Project start date June 1, 2004 (1st year project)
- Project end date November 30, 2005
- Five co-projects initiated
- ➢ 30 Percent complete

Budget

- Total project funding
 - ➢ DOE share \$2,158,370
 - ➢ contractor share \$539,593
 - \$ split nearly equally among the five projects

Safety

- The most significant hydrogen hazards associated with this project are:
 - High reactivity of solid chemical hydrides when exposed to humidified air
 - Toxicity: Avoid ingestion or contact with eyes and mucous membranes

- The approach to deal with this hazard is:
 - Handle hydrides in an inert atmosphere within a glove box
 - Use small quantities for laboratory experiments
 - Blanket reactor with inert gas 2

Technical Barriers and Targets

Hydrogen Storage

DOE Targets:

- 2005 1.5 kWh/kg (4.5 wt %), 1.2 kWh/L, \$6/kWh
- 2010 2 kWh/kg (6 wt %), 1.5 kWh/L, \$4/kWh
- 2015 3 kWh/kg (9 wt %), 2.7 kWh/L, \$2/kWh

Technical Barriers:

- higher system weight, high volume
- high cost of storage
- durability of at least 1500 cycles
- lower than expected energy efficiency
- long refueling time

Fuel Cell

DOE Targets:

- \$30/kW for transportation
- 5,000 hr lifespan
- 40 to 80 °C operating range
- electrode performance

Technical Barriers:

- high system weight and volume
- high cost
- unproven durability
- air, thermal and water management

Nuclear H₂ Production

DOE Targets:

- improved materials
- create reaction database
- more efficient system designs

DOE Barriers:

- high-temperature, corrosion resistant materials
- chemical reaction data
- system design

Project II: Development of Complex Metal Hydride Hydrogen Storage Materials (Dr. James Ritter)

Objectives

- Study the effect of different metal dopants and co-dopants on dehydrogenation (discharge or desorption) of NaAlH₄
- Study the effect of different carbon materials as a codopant with Ti and AI powder on dehydrogenation (discharge or desorption) and hydrogenation (charge or adsorption) of NaAIH₄
- Study the effectiveness of a new sonochemical pretreatment method for improving the dehydrogenation and hydrogenation kinetics of NaAIH₄
- Study the reversibility of LiAIH₄ and Mg(AIH₄)₂ when doped with Ti under conditions similar to those that are effective with Ti-doped NaAIH₄

Approach

- prepare samples of NaAlH₄, LiAlH₄ and Mg(AlH₄)₂ using a conventional wet or new sonochemical doping procedure prior to high energy ball milling
 - samples possibly doped with Ti, Zr, Fe, Al powder and or various forms of carbon
- cycle the prepared samples in a unique high pressure cycling facility to obtain qualitative discharge and charge kinetics
- discharge the prepared samples in a TGA to obtain quantitative kinetics and capacities under temperature programmed and constant temperature desorption modes
- characterize the prepared samples in terms of their dehydrogenation and hydrogenation kinetics, capacity and reversibility

TPD: Synergistic Effects of Co-Dopants, Zr and Fe, on the Dehydrogenation of NaAlH₄

Is there a combination of early and late transition metals that could instill superior performance compared to a single metal dopant like Ti? This supposition is being explored.

- Predicted TPD is expected behavior of a simple physical mixture, i.e., linear combination, of the two metal dopants.
- Observed TPD is the actual synergistic behavior of the two metal dopants.
- Observed synergism, <u>in</u> <u>most cases</u>, is **much better** than 4 mol% Zr alone!
- Consistent with the "metalmetal bond polarity" concept, in that <u>Zr and Fe</u> are from <u>opposite sides</u> of the periodic table.
- Ti and Fe exhibit similar behavior; but not Ti and Zr.

6

J. Wang, A. D. Ebner, R. Zidan, and J. A. Ritter, J. Alloys and Compounds, **391**, 245-255 (2005).

Influence of Different Carbon Materials on Dehydrogenation and Hydrogenation Rates of Carbon-Doped and Cycled NaAlH₄

All samples doped with 2 mol% Ti and 5 wt% Al and cycled 5 times All samples containing carbon doped with 10 wt%

Samples doped with Ti and carbon consistently showed faster dehydrogenation and rehydrogenation rates over just Ti-doped samples.

Samples doped with SWNTs and graphite showed the strongest and weakest effects, respectively.

At T = 125 °C and P = 1,250 psia charging of Ti and carbon doped materials occurs within 10 min!

Influence of Sonochemical PreTreatment on Hydrogenation and Dehydrogenation Rates During Cycling

Ball milled samples of NaAlH₄ wet doped and sonochemically doped in decalin with THF, all doped with 2 mol% Ti. Filled symbols correspond to the sonochemically doped sample; empty symbols correspond to the wet doped sample.

Influence of sonochemical PT on both dehydrogenation and hydrogenation kinetics, is clearly observed. The time for charging is markedly decreased again by a factor of four, from about 60 to 15 min.

Again, these results may represent the best charge kinetics to date for a sample of NaAlH₄ doped with as little as 2 mol% Ti.

Comparison of 0^{th} with 5^{th} Discharge Cycle of Ti-Doped NaAlH₄, LiAlH₄ and Mg(AlH₄)₂

Rate = $5 \circ C/min$

J. Wang, A. D. Ebner and J. A. Ritter, Adsorption, 11, 811-816 (2005).

Five discharge (4 hrs) and charge (8 hrs) cycles carried out between 50 and 1,200 psig at 125 °C for Na alanate BM 120 min, between 50 and 2,100 psig at 140 °C for Li alanate BM for 20 min, and between 50 and 1,500 psig at 150 °C for Mg alanate BM 15 min.

Under these conditions, only the Na alanate system is observed to be reversible! The Li and Mg alanates systems do not exhibit any reversibility.

Future Research Directions

<u>FY05 - FY06</u>

- \triangleright complete Raman study of Ti-doped NaAlH₄ with Dr. Williams
- continue to explore bimetallic and metal-carbon catalyzed alanates
- continue to explore new sonochemical pretreatment method possibly as an alternative to ball milling metal-doped alanates
- continue to work with Dr. Angerhofer at UF on carrying out high field EPR studies with doped alanates
- continue to work with Dr. Rasolov at USC on *ab initio* studies of TiCl₃-NaAlH₄ clusters
- continue to synthesize and study the reversibility of other metal doped alanates and boronates, and to carry out a thermodynamic analysis to explain their inherent stability

Project III: Hydrogen Storage Using Chemical Hydrides (Dr. Michael Mathews)

Objectives

- Develop hydrogen storage and delivery technology based on steam
 + chemical hydrides for automotive fuel cell applications
 - Evaluate novel steam + solid chemical hydride reaction as basis for on-demand production of hydrogen
 - Compare experimental data to FreedomCAR targets
 - Mass efficiency of reaction (8MAA)
 - Hydrogen production rate / kinetic data (12MAA)
 - Analysis of water utilization of reactor and characterization of hydration characteristics of products (14MAA)
 - Prototype design development (16 MAA)

Approach

- Hydrolyze chemical hydrides with dry steam, rather than aqueous catalytic process
 - Chemically simple reaction
 - Humid H₂ gas product
 - Hydride reactants and products are dry
 - Minimal water inventory in the reactor
 - Autothermal integration: use heat of reaction to produce steam
- Operate reactor at low temperatures (100 °C 150 °C) and pressures
- Conduct basic research on the reaction to utilize water efficiently and maximize H₂ delivery rate
 - Translate results to prototype design via mathematical model

Films of Recrystallized NaBH₄ Give Improved Initial Rates

 $NaBH_4 + (2+x)H_2O \rightarrow 4H_2(g) + NaBO_2 \cdot x H_2O$

x is an indirect measurement of the efficiency of water utilization of the reaction

- Thin films give
 higher initial rates (*x* = 2-3)
- Yields < 100% are attributed to channeling within reactor and insufficient reactant contact at longer times.

FreedomCar Gravimetric Efficiency

	Target (wt%)	Equiv. <i>x</i>
2005	4.5	4
2010	6.0	3
2015	9.0	1

Future Research Directions

FY05

- Steam/solid NaBH₄ system
 - Obtain improved gravimetric efficiency of reaction
 - Liberate H₂ wt% > 4.5 by 4/30/2005
 - Measure intrinsic kinetic rate of reaction under different operating temperatures, pressures and reactant preparations
 - Full flow of H_2 in < 10 sec by 10/30/2005
 - Clarify the effect of particle size on reactant contact and mass transfer
 - Determine hydration characteristics of products in order to improve gravimetric efficiency and understand shell formation
- Investigate additional solid hydride systems
 - Evaluate additional hydrides based on FreedomCAR requirements

FY06

- Submit description of prototype system design
 - Design will be based on laboratory-scale experiments
 - Design will be evaluated according to FreedomCar targets such as mass and volumetric efficiency and startup dynamics

Project I: Low Temperature Electrolytic Hydrogen Production (Dr. John Weidner)

Objective

- Develop a gas phase proton exchange membrane (PEM) electrolyzer to convert
 - $\succ \text{ HBr to Br}_2 \text{ and } H_2$
 - \succ SO₂ to H₂SO₄ and H₂
- Provide
 - Higher current densities (i.e., small, low cost electrolyzer)
 - Better thermal management
 - Lower voltages (i.e., higher efficiencies)
 - Lower reactant crossover (i.e., reduced posioning)
 - Better control of product purity
 - Lower catalyst loadings

Gas Phase Electrolysis Delivers

Future Work

<u>FY05 – FY06</u>

[1] P.W. Lu et. al., J. Appl. Electrochem., 347 (1981).

- quantify the relationships among design and operating parameters
- integrate electrolyzer information into the system-level Aspen model developed by SRNL
- quantify the extent of sulfur poisoning and attempt to minimize its affect
- decrease current and increase voltage for SO_2 oxidation. (Goal: 5 kA/m² @ 0.6V)
- improve water management

Project IV: Diagnostic Tools for Understanding Chemical Stresses and MEA Durability Resulting from Hydrogen Impurities (Dr. John Van Zee)

Objectives

- Develop Predictive Capabilities to Assess Durability and Failures Resulting From H₂ Impurities
 - \succ H₂S, NH₃ as models for catalysts poisoning and ionomer attack
 - Compare with Computational Fluid Dynamic Models for CO Poisoning

Provide

- Methodology for 3-D predictions of poisons
- Rate constants and mechanisms for poisoning
- Predictions and verifications of local distribution of poisons
- Improved tolerance by adjustment of operating conditions
- Understanding of dosage, concentration, and interaction effects

Significant Results/Approach

Local CO coverage distribution on anode catalyst surface at selected points for 1000 ppm CO; similar distributions are expected for H₂S data below.

Project V: Durability Study of the Cathode of a Polymer Electrolyte Membrane Fuel Cell (Dr. Ralph White)

Motivation

- ➢ kinetics of the O₂ reduction reaction (ORR) at the cathode of a PEM fuel cell is usually described by Tafel equation, which predicts a straight line on a plot of the electrode potential versus the logarithm of ORR kinetic current (e.g., E vs. ln I_k).
- actual ORR kinetics do not follow the Tafel equation because a plot of E vs. ln I_k usually yields a curve, rather than a straight line, with two slopes
- this will inevitably lead to errors in the evaluation of the relative importance of other transport phenomena, e.g., O₂ diffusion

Objectives

- * to develop a semi-empirical equation to account for the ORR kinetic current, I_k
- to evaluate the goodness of using this equation in fitting the Rotating Disk Electrode (RDE) data measured on a catalyst used widely to make a PEM fuel cell

Significant Results

Future Work

- measure the RDE data over a wide range of temperatures, e.g., 40-80 °C
- use the semi-empirical kinetic equation to develop an accurate PEM fuel cell model

Goodness of the Semi-Empirical Model in Predicting the ORR Kinetic Current, *I*_k

Goodness of the Tafel Equation in Predicting the ORR Kinetic Current, I_k

- semi-empirical equation is far superior to the Tafel equation
- using the semi-empirical equation in future PEM fuel cell modeling will improve the accuracy in the evaluation of the relative importance of other transport phenomena 22

Collaborations

Ritter

<u>Current</u>

- Ragaiy Zidan: SRNL (melt processing and scale-up)
- Chris Williams: USC (Raman spectroscopy studies)
- Vitali Rasolov: USC (ab initio studies)
- Alex Angerhofer: UF (EPR studies)

Future

• potential to interact with or become part of the Metal Hydride Center of Excellence at SNL

Weidner

Current

• William Summers: SRNL (Hybrid Sulfur Process)

<u>Future</u>

- Richard Doctor: ANL (Modified Ca-Br Process)
- Michael Simpson: INEEL (Reverse Deacon Process involving HCl)

Matthews

<u>Future</u>

• potential to interact with or become part of the Chemical Hydrogen Center of Excellence

Publications and Presentations

Publications

- 1. J. Wang, A. D. Ebner and J. A. Ritter, "On the Reversibility of Hydrogen Storage in Novel Complex Hydrides," *Adsorption*, 11, 811-816 (2005).
- 2. J. Wang, A. D. Ebner, R. Zidan, and J. A. Ritter, "Synergistic Effects of Co-Dopants on the Dehydrogenation Kinetics of Sodium Aluminum Hydride," *J. Alloys and Compounds*, **391**, 245-255 (2005).
- 3. J. Wang, A. D. Ebner, R. Zidan, and J. A. Ritter, "Effect of Graphite on the Dehydrogenation and Hydrogenation Kinetics of Ti-Doped Sodium Aluminum Hydride," *J. Alloys and Compounds*, in press (2005).
- 4. T. Prozorov, J. Wang, A. D. Ebner and J. A. Ritter, "Sonochemical Doping of Ti-Catalyzed Sodium Aluminum Hydride," *J. Alloys and Compounds*, submitted (2005).
- J. Wang, R. C. Petty, A. D. Ebner, T. Prozorov and J. A. Ritter, Low Temperature Performance of Ti-Doped Sodium Aluminum Hydride with Single Wall Carbon Nanotubes as a Co-Catalyst," *Nanotechnology*, submitted (2005).

Presentations

- 1. J. Wang, T. Prozorov, A. D. Ebner and J. A. Ritter, "Novel Complex Hydrides for Reversible Hydrogen Storage," AIChE Annual Meeting, Austin, TX, November 2004.
- 2. Michael A. Matthews, Thomas A. Davis, and Eyma Y. Marrero-Alfonso, "Hydrogen storage in chemical hydrides", ACS National Meeting, Philadelphia, PA, August 2004.
- 3. Michael A. Matthews, Thomas A. Davis, and Eyma Y. Marrero-Alfonso, "Production of hydrogen from chemical hydrides via hydrolysis with steam", AIChE Annual Meeting, Austin, TX, November 2004.
- 4. J. W. Weidner, P. Sivasubramanian, R. Ramasamy, C.E. Holland and F. Freire, "Electrochemical Generation of Hydrogen via Thermochemical Cycles," AIChE, Atlanta, GA, April, 2005.
- 5. J. W. Weidner, P. Sivasubramanian, and F. Freire, "Electrochemical Conversion of Anhydrous HBr to Br2 for Hydrogen Production," The Electrochemical Society, Honolulu, HI, October, 2004.

Patent Applications

- 1. R. Zidan, J. A. Ritter, A. D. Ebner, J. Wang and C. E. Holland, "Hydrogen Storage Material and Process Using Graphite Additive With Metal Doped Complex Hydrides, Patent Application, US Patent Application 2005/0032641A1 (2005).
- 2. J. Ritter, A. D. Ebner, C. H. Holland and T. Prozorov, "Method for Improving the Performance of Metal-Doped Complex Hydrides, Provisional Patent Application, filed February 28 (2005).

Thank You! Any Questions?