DOE Chemical Hydrogen Storage Center of Excellence

Novel Approaches to Hydrogen Storage: Conversion of Borates to Boron Hydrides Project ID# STP11

> Suzanne W. Linehan, Ph.D. Rohm and Haas Company May 23 – 25, 2005

Project Overview

Time Line

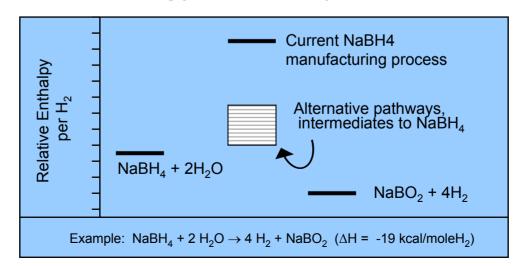
- □ Project start date
 - -□ Fiscal Year 2005
- □ Project end date
 - -□ Fiscal Year 2009
- □ Percent complete
 - −□ New start

Barriers

 ■ High cost and energy requirements for regenerating spent fuel from irreversible chemical H₂ storage systems

Budget (\$)

		<u> </u>	
Year	DOE	ROH	Total
FY05 (Actual)	275,000	124,000	399,000
Total (Reques	1,768,202 ted)	821,992	2,590,194


New project. No funding received in 2004. ROH:DOE split = 31:69

Objectives

- Define and evaluate novel chemistries and processes to produce chemical hydrides for hydrogen storage
- Focus on Tier 1 Research :
 - Conversion of B-O to B-H in spent fuel
 - Optimize energy efficiency and minimize cost

Objectives (continued)

- Leverage our experience and expertise across all 3 Center Tiers
 - Identify opportunities to improve the technology of the other Center participants
 - Ensure the success of the Center

ROH Contributions to the COE

Who are we?

- Oldest and largest producer of NaBH₄ worldwide
- Two world-class ISO 9002-certified production plants
- Allied Partner with DOE (2003)
- Listed Among America's Top 5 Most Admired Chemical Companies (Fortune Magazine)

What we bring to the Center :

- Extensive intellectual property portfolio, including technology, technical information and data on NaBH₄ and other chemical hydrides (50+ years)
- Expertise in
 - Chemical and engineering assessment capabilities for chemical processes
 - New product formulation, application development, and commercialization
 - Understanding customer and market needs
- Unparalleled manufacturing, supply chain, logistics, distribution expertise
- Expertise in Environmental, Health, and Safety
 - American Chemistry Council, AIChE CCPS involvement
 - OSHA Star VPP Award (Elma, WA NaBH₄ plant)

Approach – Four Main Tasks

- Data Mining and Development of Work Processes
- Engineering-Guided Research of Chemical Borate Reduction Routes
- Complexation and Reduction of Borates
- Electrochemical Reduction of Borates to Borohydride

Task 1 – Data Mining and Development of Work Processes

Goals

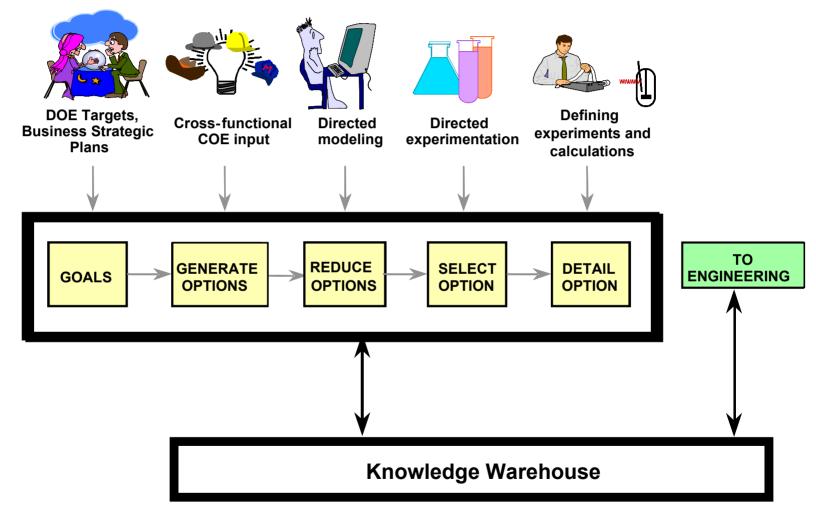
- Compile existing technical information to identify viable pathways
- Develop technical targets, criteria and metrics to ensure consistent evaluation of options
- Draw upon data and reports in US Borax,
 Redstone Arsenal, US Navy Fuel Program files to identify possible options

Partners

LANL, PNNL, Millennium Cell, US Borax,
 Pennsylvania State University

Task 2 – Engineering Guided Research of Chemical Borate Reduction Routes

Goals


- Conduct detailed engineering assessment of as many chemical borate reduction routes as possible, against established metrics
- Reduce options : identify routes that do not meet established criteria
- Identify leading routes to be pursued experimentally by Center participants

Partners

 LANL, PNNL, Pennsylvania State University, Millennium Cell

Engineering-Guided Research of Chemical Borate Reduction Routes

Goal Deliberation

- Define Goals and Objectives
- Boundaries and Assumptions
- Evaluation Criteria/Metrics
 - Cost
 - Energy Efficiency
 - Life Cycle Inventory and Analysis
 - Economics
 - DOE Targets
 - Environmental, Health, Safety and Sustainable Development

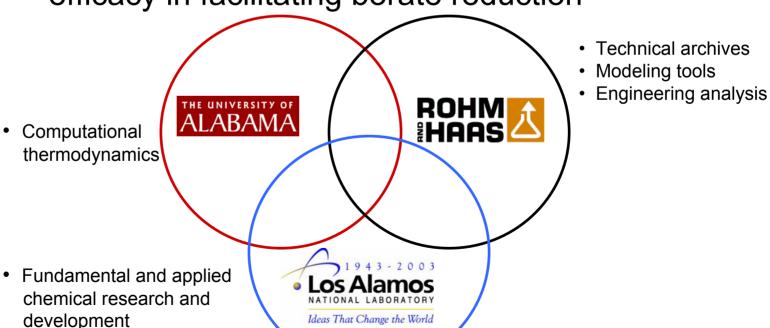
Options Generation

- Identify potential routes to produce NaBH₄ and other chemical hydrogen storage materials
 - Evaluate prior data to identify leading routes/systems
 - Compile and organize concepts
 - Brainstorm additional processing options
- Information Collection
 - Strategy
 - Sharing of relevant literature
 - Data-mining

Options Reduction

- Develop options matrix
- Define basic reaction envelopes and flowsheets
- Conduct preliminary technical and economic viability analysis
- Identify information gaps
- Establish experimental/computational needs (key data required for validation)
- Select leading options

Option Selection and Development


- Complete experimental/computational viability studies (with Center)
- Refine flowsheets based
 - on updated energy requirements
 - raw material and wastes
 - Environmental, Health, Safety, and Sustainable Development considerations
- Define optimized process
- Engineering/economic analysis with Life Cycle Analysis
- Conceptual and pilot plant designs
- Process scaleup

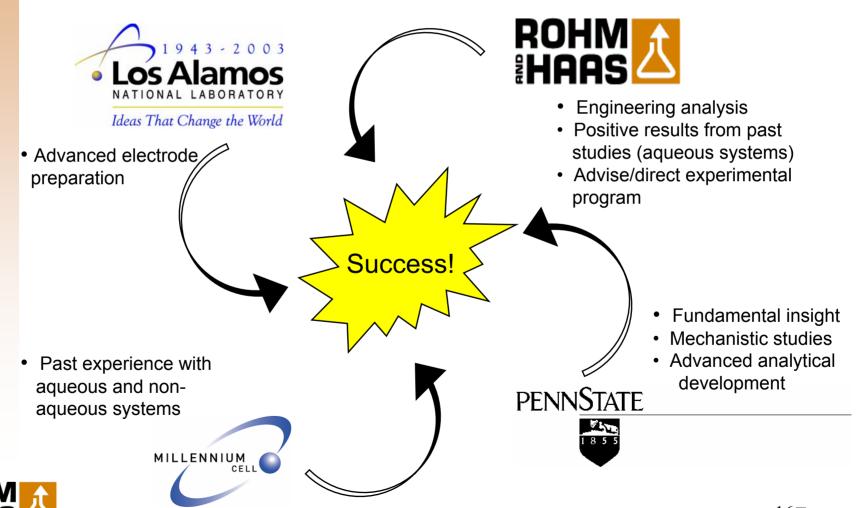
Task 3 – Complexation and Reduction of Borates

Goal

Evaluate various borate complexants for their efficacy in facilitating borate reduction

Task 4 – Electrochemical Reduction of Borates

Goals


- Optimize the efficiency of the overall reaction $BO_2^- + 6H_2O + 8e^- \rightarrow BH_4^- + 8OH^-$ (aqueous)
- Validate and optimize previous ROH success with aqueous systems
- Investigate non-aqueous electrochemical reduction

Partners

 LANL, Millennium Cell, Pennsylvania State University

Task 4 – Electrochemical Reduction of Borates

Accomplishments

- Intellectual Property (IP)
 - Drafted an agreement to cover each participant's rights in IP developed during the project
- Electrochemical Reduction of Borates
 - Kick-off meeting held on March 18, 2005 (LANL, MCEL, PSU, ROH)
 - Established work practices for group
 - Conducted review of prior IP and literature
 - Identified potential experimental studies for aqueous and non-aqueous systems
 - Identified major milestones for Year 1

Accomplishments (continued)

Systems Engineering

- Kick-off meeting held on March 21, 2005 (PNNL, MCEL, ROH)
- Established work practices for group
- Clarified Statement of Work
- Defined regeneration chemistries

Hydrogen Safety

 ROH Safety Plan submitted to DOE on February 24, 2005

Note: This is new project. Start date March 1, 2005

Project Year 1 Milestones

- Finalize IP agreement
- Data Mining / Development of Work Processes
 - Define goals and strategies, boundaries and assumptions;
 develop performance criteria and metrics
 - Document chemical pathways and process options
- Complexation and Reduction of Borates
 - Establish experimental program
- Electrochemistry
 - Establish appropriate analytical methodology
 - Establish metrics
 - Identify pathways and constraints for B-O to B-H

Future Work

Task	Year 1 Q1 - 4	Year 2 Q5 - 8	Year 3 Q9 - 12	Year 4 Q13 - 16	Year 5 Q17 - 20	
Task 1 Data-Mining	Go			ce criteria and m	etrics developed	
Task 2 Engineering- Guided Research of Chemical Borate Reduction Routes		— Leading opti	ons for experime		ified (Go/No Go) ned (Go/No Go) Top option devel and optimized	oped Pathwa
Task 3 Complexation and Reduction of Borates	Experi	mental program e	stablished	· Top option defi	Top option deve and optimized	detailed loped Pathwa detailed
Task 4 Electrochemical Reduction of Borates		_	ical methodology raints for B-O to		ned (Go/No Go) Top option deve and optimized	

Note: Project Start Date March 1, 2005