Combinatorial Synthesis and High Throughput Screening of Effective Catalysts for Chemical Hydrides

Xiao-Dong Xiang Internatix Corporation Moraga, CA

– A participant in the DOE Center of Excellence for Chemical Hydrogen Storage –

May 23, 2005

DOE 2005 Hydrogen Program Annual Review Washington, D.C., May 23-26, 2005

Project ID #

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Project start date: FY2005
- Project end date: FY2009
- Percent complete: New Start

Budget

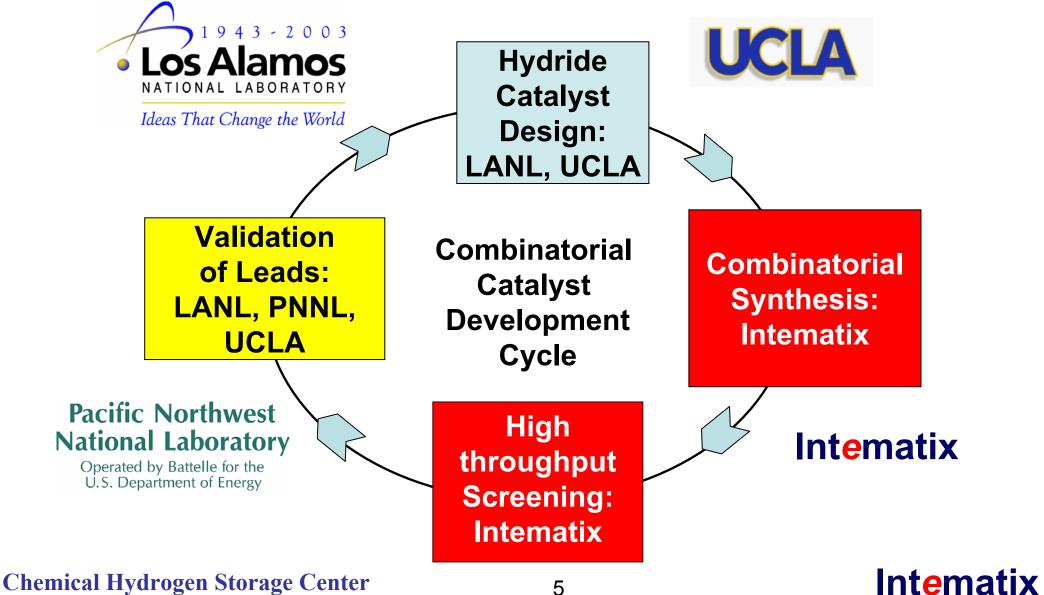
- Expected total project funding
 - DOE: \$1,100K
 - Intematix: \$277K
- Funding for FY2005: \$200K

Overview

Barriers

- Cost
- Weight and volume
- Energy efficiency
- System life-cycle assessment
- Spent material removal
- Regeneration processes

Partners

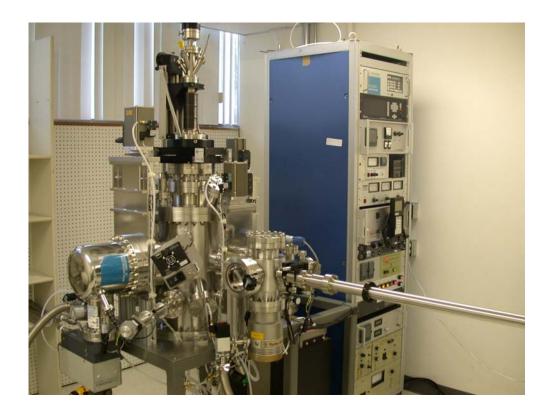

- Collaboration with LANL, PNNL, and UCLA on novel polyhedral boranes
- Future collaboration with Penn, NAU, LANL, PNNL on amine-boranes
- Other collaborations with Center partners based on future discoveries

Objectives

To assist DOE in achieving the DOE/ FreedomCAR target of a hydrogen storage system of 6.0 wt.% by 2010

- Develop and validate high-throughput synthesis and screening methods for new low-cost and effective compound catalysts for chemical hydrogen storage (current FY)
- Explore catalysts which could improve the kinetics of hydrogen release from candidate hydrogen storage materials (next FY and beyond)
- Explore new catalysts and catalytic processes which could significantly enhance regeneration processes (next FY and beyond)

Approach


Concept of Approach

- Combinatorial Synthesis
 - Internatix proprietary combinatorial synthesis technology can generate hundreds of different hydrides/catalysts combinations (thin film or nano-particles) in one experiment under oxygen free environment
- High-throughput Screening
 - Internative proprietary combinatorial high-throughput screening technology can test promising catalysts under realistic reaction conditions (high pressure/temperature, oxygen free)

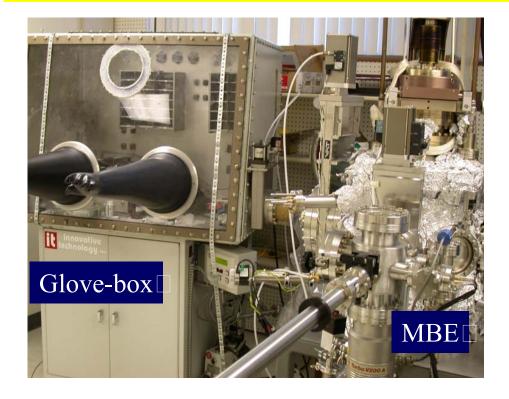
Challenging Issues

- Reactant stability and catalyst surface contamination – in situ transfer between synthesis and screening
- High-throughput screening of arrayed catalysts (thin film or nano-particles)
- Defining initial screening parameters (hydrogen concentration, end products, temperature, reaction time, reaction rate, etc.) for the arrayed catalysts

Validated a combinatorial molecular beam epitaxy (MBE) system for thin film deposition of compound catalysts

A high temperature effusion cell (up to 1900°C) has been installed for catalyst elements (such as Ti) incorporation

Validated combinatorial ion-beam sputtering (IBS) system for synthesizing catalysts and materials including air-sensitive compounds



A getter pump on the combi-IBS system has been installed to reduce the residual O₂

Chemical Hydrogen Storage Center

Intematix

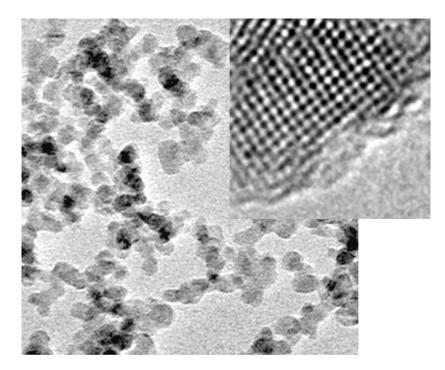
Set up an air-tight oxygen-free glove box for *in* situ sample transfer and characterization

The glove box and the MBE growth chamber are directly connected to allow sample transfer in oxygen-free environment.

Validating combinatorial nano-particle (CNP) synthesis system – the third proprietary combinatorial materials synthesis technique Internatix has recently developed

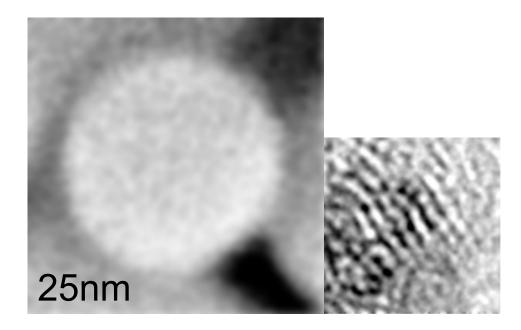
The advantages:

- Small particle size~10-50nm
- Narrow particle-size distribution
- Accessible to most elements
- Can optimize size and composition rapidly


Chemical Hydrogen Storage Center

11

Intematix


Technical Results

The CNP system is very unique and powerful in highthroughput synthesis of nano-particles

TEM images of TiO_2 nano-particles prepared by CNP under optimized conditions.

Chemical Hydrogen Storage Center

YIG nano-particle prepared by CNP under preliminary condition. Particle has welldefined circular shape. The left image shows the crystal structure is not well-ordered.

Technical Progress

Designed and constructed micro-reactor arrays to screen combinatorial catalyst libraries for hydrogen release

Image of a 3x3 micro-reactor arrays

Addressing Barriers

- Cost new non-precious metal alloy or compound catalysts will reduce the total system cost
- Weight and volume new catalysts for high weight efficiency reactions will reduce the system weight and volume
- Energy efficiency new catalysts enable high efficiency chemical hydrogen storage
- Regeneration processes new catalysts may enable low cost regeneration process

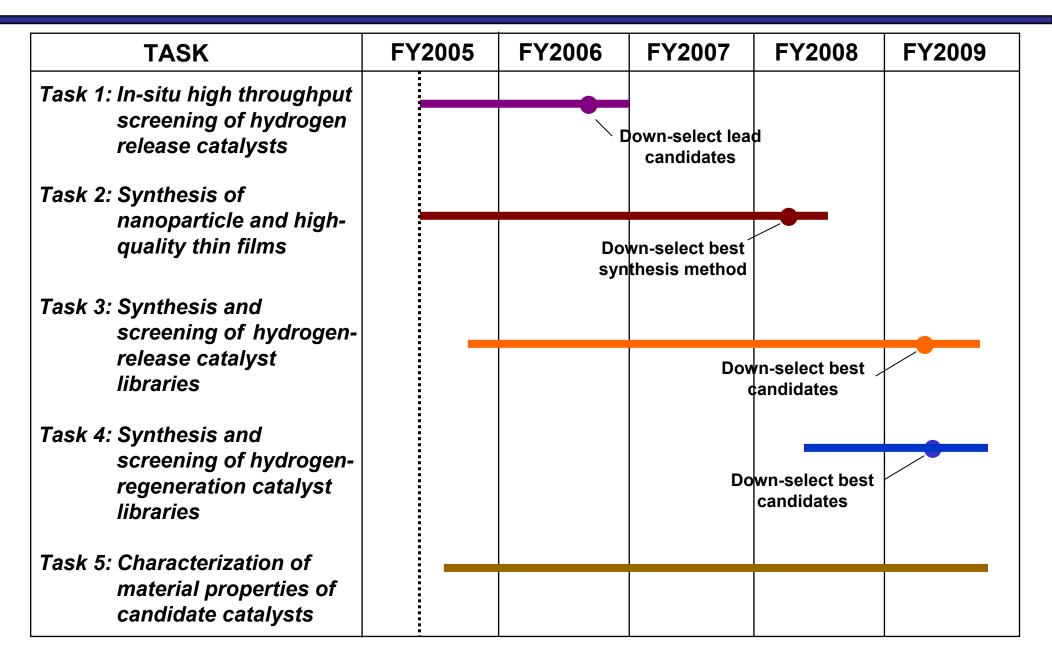
Future Plans

- Remainder of FY2005
 - High-throughput in-situ catalysts screening
 - Identify key parameters for high throughput in situ screening
 - Demonstrate effectiveness of catalyst screening methodology for model reaction: catalyst NaBH₄ + 2H₂O — \rightarrow 4H₂ + NaBO₂
 - Validate the capability of CNP for synthesizing catalyst nanoparticles

Internatix

Future Plans

• FY2006


– Synthesis and screening of catalyst libraries for hydrogen-release in polyhedral boranes, e.g.

 $\begin{array}{l} \text{catalysts} \\ \text{Na}_2\text{B}_{10}\text{H}_{10} \bullet 16\text{H}_2\text{O} & \longrightarrow 2 \text{ NaBO}_2 + 4 \text{ B}_2\text{O}_3 + 21\text{H}_2 \end{array}$

- Characterization of material properties of lead catalysts
 - Crystal structure, grain size, and alloy composition of catalyst materials

Internatix

Summary of Future Plans

Chemical Hydrogen Storage Center

Intematix