Development of Regenerable, High-Capacity Boron Nitrogen Hydrides For Hydrogen Storage

Ashok S. Damle

RTI International

DOE EERE Program Review May 25, 2005

This presentation does not contain any proprietary or confidential information

Project STP-13

Objectives

Two-Phase, 4-Year, R&D Program to exploit high hydrogen capacity Boron Nitrogen hydrides (Particularly aminoborane, NH₃BH₃) for on-board hydrogen storage

To develop large-capacity, inexpensive aminoborane synthesis process starting from its decomposition byproduct, boron nitride (BN)

To develop a simple, efficient, and controllable system for extracting all of the available hydrogen, realizing the high hydrogen density

Technical Targets

Compact and light-weight hydrogen storage on-board an automobile

About 5 kg of H_2 need to be stored for > 300 mile range

DOE's 2015 Targets -0.09 kg H₂/kg of system weight

- 0.081 kg H₂/L of system volume
- System cost \$67/ kg H₂
- Fuel cost \$1.5/GGE (~kg H₂)

Technical Barriers Addressed

- A Storage system and fuel cost
- B Gravimetric/volumetric hydrogen storage density
- C Energy efficiency
- D Durability
- E Refueling Time
- G System Life-Cycle Assessment
- R Cost effective regeneration processes
- S By-Product/Spent Material removal
- T Thermal Management for hydrogen extraction

Project Timeline

Project start – March 15, 2005 Project end – November 30, 2008

Budget

Total project funding
DOE share - \$ 1.6M
Contractor share - \$ 0.4M
Funding received in FY04 - 0
Funding for FY05 - \$ 0.2M

Collaborating Partners

State Scientific Research Center of Russian Federation (GNIIChTEOS) - Regeneration of aminoborane starting from its decomposition byproduct, boron nitride (BN)

ATK/Thiokol – Storage system design and development, Material durability and life-cycle analysis, Technical and economic feasibility analysis

Aminoborane Properties

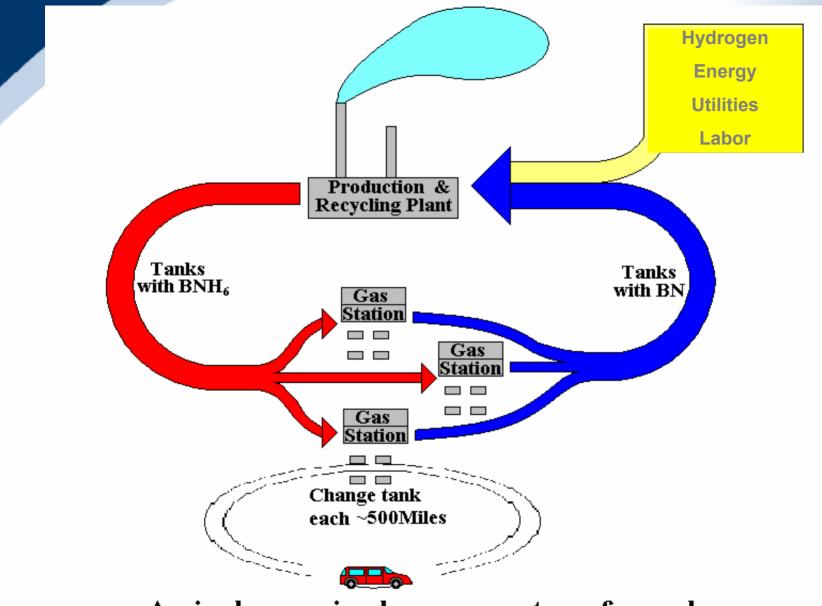
```
Molecular Formula – NH_3BH_3
White crystalline solid – stable in ambient air
Hydrogen Content – 19.6% by weight
Density - 0.74 g/cm3
Heat of formation - - 42.54 kcal/mole
Melting temperature ~ 105°C
Solubility at 20 °C is ~ 33.6 g in 100 g of water.
Water solutions of Aminoborane are also very stable
during long term storage.
```


Technical Approach

Develop large-capacity, inexpensive aminoborane synthesis process starting from its decomposition byproduct, boron nitride (BN) and utilizing commodity hydrogen

Develop a simple, efficient, and controllable system for on-board heating of aminoborane extracting all of the available hydrogen and realizing a high hydrogen density

Aminoborane for Transportation Application


On-Demand Decomposition by Direct Heating

Hydrogen combustion or electrical heating powered by Fuel Cell - Net material-based Hydrogen Density > 17% by wt

Spent Boron Nitride must be converted to Aminoborane Off-board in a central processing facility utilizing commodity hydrogen

Develop AB Distribution / BN Recycling Network

Aminoborane in close energy transfer cycle

Specific Program Objectives

Demonstrate individual steps involved in aminoborane synthesis starting from decomposition (BN) product

Process integration and scale-up

Develop on-board hydrogen extraction process

Design, develop, and demonstrate prototype (1 kg hydrogen capacity) hydrogen extraction system with >9 wt% hydrogen capacity

Determine technical and economic feasibility

Project Schedule – Phase I (2 Years)

	Tasks –	2005 🗆	2006 🗆	2007
		M A M J J A S O N D	J F M A M J J A S O N D	JE
Task 1	Laboratory-scale synthesis of aminoborane (AB) from boron nitride			
Task 2	Release of Hydrogen from aminoborane			
Task 3	Feasibility of recycle of AB decomposition products			//////
Task 4	Preliminary on-board hydrogen storage system design			
Task 5	Technical and economic feasibility assessment			//////
▲ Go/No	Go Decision	•		

Project Schedule – Phase II (2 Years)

	Tasks –		2007 🗆										2008 🗆											2009		
		Μ	A	M	J	J	A	S	D	Ν	D	J	F	M	A	M	J	J	A	S	O	Ν	D	J	F	
Task 6	Scale-up of AB synthesis process using BN and decomposition products	////	////	////		///			////	////				////		////				////						
Task 7	Integrated process design and development for AB production		////			////	////		////	////			////	////		////				////						
Task 8	Prototype on-board hydrogen storage system for 1 kg hydrogen				////		////							////					////			////				
Task 9	Concept feasibility analysis and Commercialization													////	////	////	////		////	////	////	////	////	//.		

Activities Planned for FY05

Task 1 - Laboratory-scale synthesis of aminoborane (AB) from boron nitride – Determination of process conditions and catalysts for maximizing product yield in each of the individual chemical reaction steps

Task 2 - Release of Hydrogen from aminoborane – Evaluation of heating approaches for maximizing hydrogen yield, thermal modeling of heating system

Task 4 - Preliminary on-board hydrogen storage system design – Determine requirements of an on-board hydrogen storage and delivery system, preliminary design based on heating approach

Task 5 - Technical and economic feasibility assessment – Determine costs of stored hydrogen and the storage system using updated information

Activities anticipated in FY06

Task 1 - Laboratory-scale synthesis of aminoborane (AB) from boron nitride - Finalize process conditions and catalysts for maximizing product yield in each of the individual reaction steps

Task 2 - Release of Hydrogen from aminoborane – Select a heating approach for maximum hydrogen yield, determine process parameters for hydrogen storage and extraction

Task 3 - Feasibility of recycle of AB decomposition products – Begin AB synthesis studies using AB decomposition products

Task 4 - Preliminary on-board hydrogen storage system design – Complete the preliminary design of an on-board hydrogen storage and delivery system using selected heating approach

Task 5 - Technical and economic feasibility assessment - Update estimates of costs of stored hydrogen and the storage system

Technical Milestones

Synthesis of pure AB starting from BN at a laboratory scale

Development, optimization, and demonstration of a process, suitable for on-board deployment, for extraction of pure hydrogen from AB

Demonstrate lab-scale synthesis of pure AB starting from AB decomposition products

Design an on-board AB-based hydrogen storage system with > 9 wt% H_2 capacity

Scale-up AB process to synthesize kg-scale quantities of AB from recycled products

Development of an integrated process design to convert BN to AB

Demonstrate a prototype AB based hydrogen storage system to produce 1 kg $\rm H_2$

Hydrogen Safety

The most significant hydrogen hazards:

- Handling toxic chemicals such as diborane, chlorine, hydrogen and ammonia during evaluation of aminoborane synthesis processes
- Extreme conditions during synthesis processes, e.g. high and low temperatures (e.g. 1000 C to -200 C)
- Uncontrolled release of hydrogen during evaluation of approaches for hydrogen extraction from aminoborane

Hydrogen Safety

Our approach to deal with these hazards:

- Safe laboratory practices during handling of chemicals and extreme process conditions eliminating exposure to TLV levels of toxic chemicals involved.
- Limit scale of experiments to assure safety during synthesis experiments, increasing the scale gradually as experience is gained in handling hazardous process conditions.
- Design hydrogen extraction experiments so as to eliminate any possibilities of uncontrolled release as well exposure of hydrogen to any open flame.
- Conduct all experiments in ventilated fume hood areas

