



# Synthesis and Properties of Aluminum Hydride as a Hydrogen Storage Material

# J. Wegrzyn, J.Graetz, J. Reilly and J. Johnson Brookhaven National Laboratory Upton, NY – A Participant in the DOE Metal Hydride Center of Excellence –

# May 23, 2005

DOE 2005 Hydrogen Program Annual Review, Washington, D.C., May 23, 2005

This presentation does not contain any proprietary or confidential information

Project ID # STP16



Overview



### Timeline

- Project start date: FY05
- Project end date: FY09
- •Percent complete: New Project

# Budget

- Expected Total Project Funding:
  - 5 years: \$3.00M
  - DOE Share: \$2.60M
  - Contractor Share: \$0.40M

Funding for FY05:

\$200K (DOE),

\$150K (cost share BNL-LDRD)

### Barriers

Hydrogen reversibility Energy penalty of regeneration

## Targets

Total system gravimetric : >8%Total system volumetric : > 0.10 kg  $H_2/L$ Tank operating temp:85/95°CTank operating pressure:2 bar (30 psig)

### **Partners**

- Participant in DOE Metal-Hydride Center of Excellence; collaborations with MHCoE partners on modeling, regeneration and engineer tank design
- Coordinator of sub-team on aluminum hydride for onboard hydrogen storage systems (U. Hawaii, JPL, SRNL,U. Illinois Carnegie Mellon and SNL)





<u>Mission Statement:</u> To develop and demonstrate a safe and costeffective light-metal hydride material system that meets or exceeds the DOE goals for on-board hydrogen storage.

**Decomposition of AIH**<sub>3</sub>

H-capacity (g) = 10.1 wt% (DOE 2010 Storage-Target = 6.0) H-capacity (v) = 149 kg/m3 (DOE 2010 Storage-Target = 45)  $\Delta H_{des}$  = 7.6 kJ/mol H2 (only 20% of NaAlH4)

AIH<sub>3</sub>



**Depleted Al** 





MHCoE Sub-Team on Aluminum Hydride





Other partners in MHCoE will also contribute in areas of modeling, simulation and diagnostics



Thermodynamic Instability of Aluminum Hydride





Gas recharging: 28 kbar@300°C !!

Baranowski & Tkacz, Z. Phys. Chem. NF, 135 (1983) 27



 $\alpha$ -AIH<sub>3</sub> TPD Curves vs BM Time & Particle Size





Sandrock et al, Appl. Phys. A, 80 (2005) 687-690

Isothermal Kinetics of α-AIH<sub>3</sub> (Dow) 20 mol% LiH





- high-rate segment:  $k_0 = 6.5^{\circ} * 10^{12}$  and Q = 91.3 kJ/mol H<sub>2</sub>
- lower-rate segment :  $k_0 = 5.4^{\circ} * 10^8$  and Q = 68.2 kJ/mol H<sub>2</sub>

Sandrock et al, Appl. Phys. A, 80 (2005) 687-690

BRUUKHAVEN NATIONAL LABORATORY





- A total of seven AIH<sub>3</sub> isomers are known to exist:
  - α, α', β, δ, ε, γ, ζ
- With exception of  $\alpha$ -AIH<sub>3</sub>, little is known about these polymorphs
- α, β, and γ phases can be grown using an organo-metallic synthesis method







•Ethereal reaction of AICI<sub>3</sub> and LiAIH<sub>4</sub> yields solvated AIH<sub>3</sub>

•Solvent removed by adding excess LiAlH<sub>4</sub> and heating at 60-70° C





Isothermal Decomposition of AIH<sub>3</sub>



 Desolvated AIH<sub>3</sub> undergoes a number of phase transitions at 60° C

 $AIH_{3}$ etherate  $\rightarrow \beta + \gamma \rightarrow \alpha \rightarrow AI$ 

- Transformations occur with little/no H<sub>2</sub> evolution
- AIH<sub>3</sub> decomposition note induction period ~10 h at 60° C



 $\gamma$ -AlH3 and  $\beta$ -AlH3 <u>do not</u> appear to decompose directly to Al and H<sub>2</sub> at 60° C, rather, a transformation to a more stable polymorph ( $\alpha$ -AlH<sub>3</sub>) occurs first.  $\alpha$ -AlH<sub>3</sub> then undergoes complete decomposition to the elements at 60° C (t~100 h).



# Temperature Programmed Decomposition





?

- $\alpha$ AlH<sub>3</sub> synthesized by DOW Chem. Co. composed of large crystallites (50 100  $\mu$ m) aged 25 yrs in air:
  - measure hydrogen capacity 8 wt%
  - onset of rapid H2 evolution occurs at 160° C
- BNL synthesized AIH<sub>3</sub>
  - measured hydrogen capacity ~10 wt%
  - onset of rapid  $H_2$  evolution occurs at 120° C







• AlH<sub>3</sub> may be regenerated from recovered products after hydrogen fuel is spent





### Onboard Recharging Problem with Conventional Hydrides





How much heat must be removed during recharging? DOE 2010 Target = 3 min = 1.67 kg/min (5 kg H<sub>2</sub> tank) Take as example NaAlH<sub>4</sub> ( $\Delta$ H = -37 kJ/mol H<sub>2</sub>)

#### dQ/dt = 510 kw or Q total = 91.8MJ $!! \Rightarrow$ Offboard recharge required





#### **Deliverables:**

- 10 gm. AIH<sub>3</sub> samples to SwRI; 8% or better by wt. @ 150°C; FY 06
- 10 gm. AlH<sub>3</sub> samples to SwRI; 9% or better by wt. @ 85/95°C; FY07
- 1000 gm AlH<sub>3</sub> samples to SNL for fuel tank development and testing; FY 08

#### **Decision Points:**

- selection of either direct or chemical method of regeneration; FY 06
- selection of additives and optimum particle size for AIH<sub>3</sub>; FY 07
- selection of tank refueling method; FY 08

#### Go/No-Go:

- on the direct onboard re-hydriding of spent aluminum powder; FY 06

#### **Milestones**

- complete stability and shelve life studies on AIH<sub>3</sub>; FY 07
- complete thermal management studies on the control release of H<sub>2</sub>; FY 08
- selection of method for regenerating AIH<sub>3</sub>; FY 09



### Summary of Program Plans









- 1.  $AIH_3$  is a promising  $H_2$  fuel source for a PEM fuel cell due to the high gravimetric/volumetric hydrogen capacity and the low heat required to extract  $H_2$  (7.6 kJ/mol  $H_2$ ).
- 2. Doping aged AlH<sub>3</sub> (DOW) with LiH, NaH or KH increases lowtemperature decomposition kinetics.
- 3.  $\alpha$ ,  $\beta$  and  $\gamma$  AIH<sub>3</sub> have been synthesized at BNL using organo-metallic methods
- 4. Hydrogen capacities approaching 10 wt% at T < 100° C have been demonstrated with freshly prepared  $AIH_3$
- 5. Recharging of spent Al back to AlH<sub>3</sub> likely to be done with an offboard process yet to be developed.