Neutron Scattering Characterization and Thermodynamic Modeling of Advanced Metal Hydrides for Reversible Hydrogen Storage

Terrence J. Udovic

National Institute of Standards & Technology Gaithersburg, MD

– A Participant in the DOE Metal Hydride Center of Excellence –

May 23-24, 2005

DOE 2005 Hydrogen Program Annual Review, Washington, D.C., May 23, 2005

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Start date Apr. 2005
- End date Oct. 2009
- % complete →New Project

Budget

- Total project funding DOE share \rightarrow 100%
- Funding for FY05 \rightarrow \$125K

Barriers

 to understand the physicochemical properties of promising hydrogen-storage materials developed by the other Center partners

Partners

 Sandia, JPL, HRL, Caltech, U. Hawaii, GE, Nevada-Reno

Project Objectives

- to provide fundamental physicochemical property characterization of MHCoE-developed hydrogenstorage materials via neutron metrology.
- to provide critical assessments of hydrogen content, heats of reaction, and phase-reaction sequences during hydrogen charge-discharge cycling of MHCoE-developed hydrogen-storage materials via Calphad-based thermodynamics computations.

Approach – Neutron Metrology

We will use the comprehensive array of neutron instrumentation available at the NIST Center for Neutron Research (NCNR) to characterize hydrogen-storage materials of interest to the MHCoE.

- The unusually large neutron scattering cross section for hydrogen can be routinely exploited by a range of experimental neutron methods in order to probe the amount, location, bonding states, diffusion, and morphological aspects of hydrogen in these materials.
- Such information is difficult or impossible to obtain by other probes.

Approach – Thermodynamics Computations

Using the Calphad method, we will calculate phase equilibria and reactions of hydrogen-storage materials of interest to the MHCoE.

- One set of thermodynamic functions describes phase equilibria as well as thermochemical properties.
- Calphad provides predictive capability for composition/temperature/pressure regimes for which no experimental information is available (including metastable equilibria)

Technical Progress/Results -Neutron Metrology

Began investigating vibrational spectroscopy, structure, and H content of phases present in the LiH/Si system.

- Found preliminary neutron spectroscopic and diffraction evidence for previously unknown ternary Li-Si-H phase recently indicated by XRD and NMR measurements from JPL/Caltech/HRL.
- Obtained H contents of different LiH/Si samples received from JPL using neutron prompt gamma activation analysis (PGAA).

Technical Progress/Results -Neutron Metrology

Preliminary Neutron Vibrational Spectrum of Unknown $\text{Li}_x \text{Si}_y \text{H}_z$ Ternary Phase in $\text{Li}_{2.5} \text{Si} \text{H}_{1.4}$ at 3.5 K.

NIST

Preliminary Neutron Powder Diffraction Pattern of Unknown $\text{Li}_x \text{Si}_y \text{D}_z$ Ternary Phase in $\text{Li}_{2.5} \text{SiD}_{1.4}$ at 295 K.

Technical Progress/Results -Thermodynamics Computations

Investigated the reaction: $MgH_2 + \frac{1}{2} Si \leftrightarrow \frac{1}{2} Mg_2Si + H_2$

- Evaluation of different existing databases showed qualitative agreement between 11.5 °C and 62.6 °C at 0.1 MPa.
- SGTE database was selected for future calculations.
- P–T dependence was calculated.
- (In collaboration with HRL).

Future Work – Neutron Metrology

Remainder of FY 2005:

- Characterize the effects of ball-milling on the structure and hydrogenbonding potentials in Ti-doped and undoped NaAlH₄ (in collaboration with U. Hawaii).
- Characterize structures and H dynamics for the LiH/Si and MgH₂/Si systems (in collaboration with JPL/Caltech/HRL).
- Characterize structures of mixed-alkali alanates (in collaboration with Sandia).
- Provide neutron metrology to other MHCoE partners on any new hydrogen-storage materials of interest.

FY 2006:

- Characterize structures and H dynamics for the Li–Mg–B–H system, possibly using ⁷Li and ¹¹B.
- Provide neutron metrology to other MHCoE partners on any new hydrogen-storage materials of interest.

Future Work – Thermodynamics Computations

Remainder of FY 2005:

- Develop Calphad compatible fugacity/pressure function for H₂
- Evaluate literature for thermochemical data for the Li–Mg–B–H system (in collaboration with HRL, GE).

FY 2006:

- Construct thermodynamic database for the Li–Mg–B–H system.
- Devise strategy for obtaining missing quantities of the Li–Mg–B–H system.

Project Summary

Project Plans & Schedule for Technical Effort by NIST (Go/No-Go Points Shown by Solid Red Circles)																				
		FY-05			FY-06				FY-07				FY-08				FY-09			i
TASKS	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1. Neutron Metrology																				
Characterize effects of ball-milling on structure and bonding of NaAlH $_4$			_																	
Characterize the structures and bonding in LiH/Si and MgH ₂ /Si			_																	
Characterize the structures and bonding in mixed alkali alanates																				
Provide neutron metrology to partners with respect to other key materials			_				•													
2. Calphad Computations																				
Evaluate phase equilibria for Mg-Si-H and Li-Si-H			_																	
Evaluate phase equilibria for Li-Mg-B-H																				
Provide Calphad computations to assess other promising materials			_																	
Deliverables																				
Oral and written reports (Annual Reviews denoted by 🌑)			٠				٠								٠					

Questions?

- Contact: Terry Udovic at 301-975-6241, <u>udovic@nist.gov</u> or
- Ursula Kattner at 301-975-6044, <u>kattner@lurch.nist.gov</u>

