Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen Storage: Structure and Kinetics of Nanoparticle and Model System Materials

Bruce Clemens Stanford University April 15, 2005

- Part of the DOE Metal Hydride Center of Excellence -

This presentation does not contain any proprietary or confidential information

Project ID: STP22

Overview

Timeline

- Project Start Date: FY05
- Project End Date: FY09
- Percent Complete: New Project

Budget

- Total project funding (expected)
 - DOE share\$778,828
 - Contractor share \$199,093
- Funding for FY05:
 - DOE share \$150,000
 - Contractor share 37,500

Barriers Addressed

- Hydrogen Capacity and Reversibility
- Weight and Volume
- Efficiency
- Lack of Understanding of Hydrogen Physisorption and Chemisorption
- Targets
 - 6% Gravimetric Capacity
 - .045 kg/L Volumetric Capacity
 - -30/80°C min/max Delivery Temp.

Partners

- DOE Metal Hydride Center of Excellence Members
- MHCoE sub-team on thermodynamically tuned nanophase materials
 - (Caltech, JPL, HRL, U. Hawaii)

• Perform *In-Situ* Structural Studies of Hydrogen Storage Materials

- Utilize high brightness x-ray source at Stanford Synchrotron Radiation Laboratory
- Construct Sieverts apparatus for *in-situ* control of hydrogen content
- Demonstrate feasibility of *in-situ* synchrotron studies
- Investigate Light Metal Hydride Model Material Systems
 - Use engineered thin film model systems to investigate phase change and catalytic processes associated with hydrogen cycling
- Develop Kinetic Model of Nanoparticle Phase Transformations
 - Build continuum models of nanoparticle kinetics to illuminate mechanisms of hydride formation in nanoscale materials

In-Situ Structural Studies

- Real time structural analysis using high brightness synchrotron radiation
- *In-situ* hydrogen charging of candidate materials
- Correlate structural changes with hydrogen charging characteristics
- Model Material System Design and Synthesis
 - Design and grow model material systems using physical vapor deposition techniques such as sputtering
 - Use input from MHCoE partners and kinetic modeling to select candidate materials
- Kinetic Modeling of Nanoparticle Transformations
 - Model kinetic processes of phase transformations in nanoparticles to guide future material selection and design
 - Apply existing thermodynamic data to new model to shed light on nanoscale processes

Model Systems: Mg/Pd Nanostructured Films

- Pd cap:
 - Catalyzes H2 dissociation
 - Rapid diffusion of H atoms
 - Source for atomic hydrogen
- Ti cap:
 - Suggested as another possible catalyst candidate

Thin film vapor phase synthesis:

- Atomic scale control of composition
- Engineer interface density and catalyst geometry
- One-dimensional diffusion geometry
- Ideal for reaction kinetic studies
- Samples sent to HRL team for compositional analysis
 - Determine impurity content (especially oxygen)

Model Systems: Mg/Pd Nanostructured Films

- Films Analyzed Using X-Ray Diffraction (XRD) to Examine Structure/Composiition
- Diffraction Results:
 - Mg film with strong (002) texture
 - No presence of second orientation or phase (e.g. MgO)
 - Rocking curve width 5.2°
- Demonstrates Ability to Deposit Highly Textured Mg Thin Films
 - Nanostructured model system: proof of concept

SIMS Depth Profiling Data

- Shows film composition as function of depth from surface
- Deuterium (2H) signal shows hydriding behavior of Mg thin film

٠

Model Systems: Mg/Pd Nanostructured Films

• Mg/Pd Multilayer Films:

- Demonstrates atomic level control of composition and catalyst distribution through controlled sputter deposition
- High interface density ~ 300 m2/cm3

Ideal structures for studies of:

- Catalyst effects
- Interface effects

- Small angle x-ray scattering
 - Peaks show strong composition modulation
 - Analysis allows calculation of bilayer periodicity
 - Samples used to determine tooling factors in sputtering chamber
- Demonstrates Ability to Engineer Material Structures at the Nanoscale

Tooling Factor Determination

- Series of three multilayer samples with different bilayer periodicity
 - MgPd_Multilayer1: (60Å Mg/ 90Å Pd) nominal bilayer periodicity of 150Å MgPd_Multilayer2: (90Å Mg/ 60Å Pd) nominal bilayer periodicity of 150Å
 - MgPd_Multilayer3: (60Å Mg/ 60Å Pd) nominal bilayer periodicity of 120Å
- Measured bilayer periodicity (from low angle x-ray reflectivity scans) gives tooling factors for Mg and Pd

Model Systems: Mg₂Si Nanostructured Films

- Mg₂Si film deposited by codeposition of Mg and Si
- Determine whether sample can be charged with hydrogen
 - Collaborative effort with HRL team
- Nanostructured Model System Using Novel Material and Synthesis Technique

Model Systems: Mg₂Si Nanostructured Films

• Diffraction Data Before Hydrogen Charging In RTA Furnace

- Mg₂Si (200) and Pd (111) peaks overlap nearly exactly
 - Mg₂Si (220): 40.156°
 - Pd (111): 40.149°
- Sharpness and intensity of peak indicates formation of the Mg₂Si phase

Evidence for formation of Mg_2Si phase

Oscillations give thickness - used to monitor H-induced volume changes

- Nanoscale Material Synthesis Methods For Future Work
 - Physical vapor deposition of thin films
 - Thin film growth on mesopourous silica substrates
 - Nanoparticle generation from condensing vapor
 - Mechanical milling
 - Controlled formation of nanostructures and nanometerscale chemical features
 - Investigate effect of nanometer scale chemistry and structure in hydrogen-storage systems (e.g. Mgcatalyst)

In-Situ Structural Studies: Progress

- Received Sieverts apparatus
 - Controlled hydrogen charging
 - Determine hydrogen storage capacity of model systems
- Plumbing and hydrogen safety safeguard installation ongoing
 - County approved piping
 - Flammable gas cabinet for compressed hydrogen storage

In-Situ Structural Studies: Capabilities

Synchrotron Radiation Facilities at SSRL

Characteristics

- High flux
- Controlled environment
 - Temperature: RT to 1500 C
 - Control of atmosphere (eg. H₂ pressure)

Parallel x-ray detection

- Linear (existing) Area (planned)
- Rapid collection of diffraction data
- 1-10 second acquisition time

Has Potential to Study

- Reaction kinetics
- Hydrogen-induced phase transitions
- Study these as a function of
 - Storage media size and morphology
 - Temperature and environment

In-Situ Structural Studies: Future Goals

- Install hydrogen charging apparatus on SSRL beamline
- Perform real time structural studies while material charges
- Analyze data to correlate hydriding behavior with:
 - Reaction kinetics
 - Structural changes

Kinetic Modeling: Nanoscale Phase Transitions

Kinetic Modeling: Nanoparticle Thermodynamic Properties

- Due to interface and surface effects, thermodynamic properties (melting points, structure, phase formation) of nanoparticles are distinctly different from that of bulk materials
- Thermodynamics of nanoparticles are largely unknown.

Example: Extended solid solubility

Kinetic Modeling: Extended Solubility in Mg₂Si Nanoparticles

- Faster reaction kinetics
- Easier nucleation

Upcoming Work and Milestones

		Year 1				Year 2				Year 3				Year 4				Year 5			
TASK AND MILES TONE	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	
1. In-situ St ructu ral Studies																					
In-situ synch rotron di ffrac tion studies																					
Construct /acquire Sieve rts apparatus for in-situ synch rotron studies																					
In-situ synch rotron studies of kinetics and phase transitions du ring hydr ogen cycli ng			-																		
Nano structu red Mg-based alloys	-																				
Nano structu red Li -based a lloys																					
2. Mod el Sys tem s																					
Desig n of model sys tem arc hitec ture									-												
Growth of thin film and multilaye r systems		-																			
Structur al studies in Mg/catalyst multilayers																					
Hydro gen reaction kinetics in Mg/catalyst mu Itilayers and islanded films				1																	
Sincle crys tal films																					
Feedback to material design												C									
3. Kinetic Modeling of Nan opar ticle Pha se Transformations																					
Initial n ano-phase models																					
Theory group interact ion for model parameters																					
Exper imental guidance and material des ign																					
Deliverables																					
Oral and written reports																					
Contribute to test samples to independent characterization lab																					
One -kg nanos tructu red sample to San dia for prototype tes ting																					

Figure 2. Project schedul e for technical effort by Stanford University (Go/No-Go sho wn by solid circles)

