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Overview

• Timeline
– Project Start Date: FY05
– Project End Date: FY09
– Percent Complete: New Project

• Budget
– Total project funding (expected)

• DOE share$778,828
• Contractor share $199,093

– Funding for FY05:
• DOE share $150,000
• Contractor share 37,500

• Barriers Addressed
– Hydrogen Capacity and Reversibility
– Weight and Volume
– Efficiency 
– Lack of Understanding of Hydrogen 

Physisorption and Chemisorption
• Targets

– 6% Gravimetric Capacity
– .045 kg/L Volumetric Capacity
– -30/80°C min/max Delivery Temp.

• Partners
– DOE Metal Hydride Center of 

Excellence Members
– MHCoE sub-team on 

thermodynamically tuned 
nanophase materials

• (Caltech, JPL, HRL, U. Hawaii)



Objectives

• Perform In-Situ Structural Studies of Hydrogen Storage Materials
– Utilize high brightness x-ray source at Stanford Synchrotron Radiation 

Laboratory
– Construct Sieverts apparatus for in-situ control of hydrogen content
– Demonstrate feasibility of in-situ synchrotron studies

• Investigate Light Metal Hydride Model Material Systems
– Use engineered thin film model systems to investigate phase change and 

catalytic processes associated with hydrogen cycling

• Develop Kinetic Model of Nanoparticle Phase Transformations
– Build continuum models of nanoparticle kinetics to illuminate mechanisms of 

hydride formation in nanoscale materials



Approach

• In-Situ Structural Studies
– Real time structural analysis using high brightness synchrotron radiation 
– In-situ hydrogen charging of candidate materials
– Correlate structural changes with hydrogen charging characteristics

• Model Material System Design and Synthesis
– Design and grow model material systems using physical vapor deposition 

techniques such as sputtering
– Use input from MHCoE partners and kinetic modeling to select candidate 

materials

• Kinetic Modeling of Nanoparticle Transformations
– Model kinetic processes of phase transformations in nanoparticles to guide 

future material selection and design
– Apply existing thermodynamic data to new model to shed light on nanoscale

processes 



Model Systems: Mg/Pd Nanostructured Films 

• Pd- and Pd/Ti-capped Mg films
• Pd cap:

– Catalyzes H2 dissociation
– Rapid diffusion of H atoms
– Source for atomic hydrogen

• Ti cap:
– Suggested as another possible 

catalyst candidate
• Thin film vapor phase synthesis:

– Atomic scale control of composition
– Engineer interface density and 

catalyst geometry
– One-dimensional diffusion geometry
– Ideal for reaction kinetic studies

• Samples sent to HRL team for 
compositional analysis

– Determine impurity content 
(especially oxygen)

500 nm Mg Film

Si substrate

15 nm
Pd Cap

12 nm Pd 
+ 9nm Ti
Cap

200 nm Mg Film

Si substrate



Model Systems: Mg/Pd Nanostructured Films

• Films Analyzed Using X-Ray Diffraction (XRD) to Examine Structure/Composiition
• Diffraction Results:

– Mg film with strong (002) texture
• No presence of second orientation or phase (e.g. MgO)

– Rocking curve width 5.2°
• Demonstrates Ability to Deposit Highly Textured Mg Thin Films

– Nanostructured model system: proof of concept
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Model Systems: Mg/Pd Nanostructured Films

• SIMS Depth Profiling Data
– Shows film composition as function of depth from surface
– Deuterium (2H) signal shows hydriding behavior of Mg thin film



Model Systems: Mg/Pd Nanostructured Films

• Mg/Pd Multilayer Films:
– Demonstrates atomic level control of composition and catalyst distribution through 

controlled sputter deposition
– High interface density ~ 300 m2/cm3

• Ideal structures for studies of:
– Catalyst effects
– Interface effects

Si substrate

Mg/Pd 
multilayer



Model Systems: Mg/Pd Nanostructured Films

• Small angle x-ray scattering
– Peaks show strong composition modulation
– Analysis allows calculation of bilayer periodicity

• Samples used to determine tooling factors in sputtering chamber

• Demonstrates Ability to Engineer Material Structures at the Nanoscale
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Model Systems: Mg/Pd Nanostructured Films

• Tooling Factor Determination
– Series of three multilayer samples with different bilayer periodicity

• MgPd_Multilayer1: (60Å Mg/ 90Å Pd) nominal bilayer periodicity of 150Å
MgPd_Multilayer2: (90Å Mg/ 60Å Pd) nominal bilayer periodicity of 150Å

• MgPd_Multilayer3: (60Å Mg/ 60Å Pd) nominal bilayer periodicity of 120Å
– Measured bilayer periodicity (from low angle x-ray reflectivity scans) gives 

tooling factors for Mg and Pd
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Model Systems: Mg2Si Nanostructured Films

• Mg2Si film deposited by codeposition of Mg and Si
• Determine whether sample can be charged with hydrogen

– Collaborative effort with HRL team
• Nanostructured Model System Using Novel Material and Synthesis 

Technique

500 nm Mg2Si Film

Si substrate

15 nm
Pd Cap



Model Systems: Mg2Si Nanostructured Films

• Diffraction Data Before Hydrogen Charging In RTA Furnace
– Mg2Si (200) and Pd (111) peaks overlap nearly exactly

• Mg2Si (220): 40.156°
• Pd (111): 40.149°

– Sharpness and intensity of peak indicates formation of the Mg2Si phase
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Model Systems: Future Work

• Nanoscale Material Synthesis 
Methods For Future Work

– Physical vapor deposition of thin 
films

– Thin film growth on mesopourous
silica substrates

– Nanoparticle generation from 
condensing vapor

– Mechanical milling

• Controlled formation of 
nanostructures and nanometer-
scale chemical features

– Investigate effect of nanometer 
scale chemistry and structure in 
hydrogen-storage systems (e.g. Mg-
catalyst)

Mesoporous silica substrate formed from 
decomposition of block-copolymer/TEOS solution

Au nanoparticle array 
formed by deposition onto 
mesoporous substrate 



In-Situ Structural Studies: Progress

• Received Sieverts apparatus
– Controlled hydrogen charging
– Determine hydrogen storage 

capacity of model systems

• Plumbing and hydrogen safety 
safeguard installation ongoing

– County approved piping
– Flammable gas cabinet for 

compressed hydrogen storage

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.



In-Situ Structural Studies: Capabilities

Synchrotron Radiation
Facilities at SSRL • Characteristics

– High flux
– Controlled environment

• Temperature: RT to 1500 C
• Control of atmosphere (eg. H2

pressure)

• Parallel x-ray detection
– Linear (existing) Area (planned)
– Rapid collection of diffraction data 
– 1-10 second acquisition time

• Has Potential to Study
– Reaction kinetics
– Hydrogen-induced phase transitions
– Study these as a function of 

• Storage media size and morphology
• Temperature and environment 



In-Situ Structural Studies: Future Goals

• Future Work
– Install hydrogen charging apparatus 

on SSRL beamline
– Perform real time structural studies 

while material charges
– Analyze data to correlate hydriding

behavior with:
• Reaction kinetics
• Structural changes  



Kinetic Modeling: Nanoscale Phase Transitions
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Kinetic Modeling: Nanoparticle Thermodynamic Properties

• Due to interface and surface effects, thermodynamic properties (melting 
points, structure, phase formation)  of nanoparticles are distinctly different 
from that of bulk materials

• Thermodynamics of nanoparticles are largely unknown. 

Extended solubility

g

xB

α Phase
β Phase

Two phase (bulk)

Two phase (nano)

~γ/r

Cost of interface drives up free 
energy of two-phase system for 
nanoparticles

Example: Extended solid solubility

fcc Au-Fe extended solid 
solution nanoparticle (Li, 
Sinclair, Dai)



Kinetic Modeling: Extended Solid Solubility of H in Mg Nanoparticles

Interface cost drives up the energy 
of two-phase configuration

Energy of two-phase system above 
that of supersaturated solution!

Interface energy γ

hcp Mg
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Kinetic Modeling: Extended Solubility in Mg2Si Nanoparticles
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• Predicted solubility for nanoparticle is 1000 x that for bulk

• Dramatic consequences for reaction pathways 
involving phase changes in nanoparticles (eg
thermodynamically tuned systems such as MgSi)



Kinetic Modeling: Nanoparticle Nucleation
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Upcoming Work and Milestones

Figure 2.   Projec t schedul e  fo r tec hnica l e ffor t by  S tanf ord  Univers ity  (G o/No -Go sho w n by  soli d  circles )  
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