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Overview

e Timeline Barriers Addressed

— Project Start Date: FY05 — Hydrogen Capacity and Reversibility
— Project End Date: FY09 — Weight and Volume
— Percent Complete: New Project — Efficiency

- Budget — Lack of Understanding of Hydrogen
_  Total project funding (expected) Physisorption and Chemisorption

+ DOE share$778,828  Targets
« Contractor share $199,093 — 6% Gravimetric Capacity
— Funding for FY05: — .045 kg/L Volumetric Capacity
* DOE share $150,000 — -30/80°C min/max Delivery Temp.
* Contractor share 37,500
 Partners

— DOE Metal Hydride Center of
Excellence Members

— MHCoE sub-team on
thermodynamically tuned
nanophase materials

+ (Caltech, JPL, HRL, U. Hawaii)
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Objectives

* Perform In-Situ Structural Studies of Hydrogen Storage Materials

— Utilize high brightness x-ray source at Stanford Synchrotron Radiation
Laboratory

— Construct Sieverts apparatus for in-situ control of hydrogen content
— Demonstrate feasibility of in-situ synchrotron studies

* Investigate Light Metal Hydride Model Material Systems

— Use engineered thin film model systems to investigate phase change and
catalytic processes associated with hydrogen cycling

 Develop Kinetic Model of Nanoparticle Phase Transformations

— Build continuum models of nanoparticle kinetics to illuminate mechanisms of
hydride formation in nanoscale materials
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Approach

* In-Situ Structural Studies
— Real time structural analysis using high brightness synchrotron radiation
— In-situ hydrogen charging of candidate materials
— Correlate structural changes with hydrogen charging characteristics

 Model Material System Design and Synthesis
— Design and grow model material systems using physical vapor deposition
techniques such as sputtering
— Use input from MHCoE partners and kinetic modeling to select candidate
materials

« Kinetic Modeling of Nanoparticle Transformations
— Model kinetic processes of phase transformations in nanoparticles to guide
future material selection and design
— Apply existing thermodynamic data to new model to shed light on nanoscale

processes
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Model Systems: Mg/Pd Nanostructured Films

Pd- and Pd/Ti-capped Mg films
Pd cap:

— Catalyzes H2 dissociation

— Rapid diffusion of H atoms

— Source for atomic hydrogen
Ti cap:

— Suggested as another possible

catalyst candidate

Thin film vapor phase synthesis:
— Atomic scale control of composition

— Engineer interface density and
catalyst geometry

— One-dimensional diffusion geometry

— Ideal for reaction kinetic studies
Samples sent to HRL team for
compositional analysis

— Determine impurity content
(especially oxygen)

v METAL
tlogod HYDRIDE

2 | CENTER oF
EXCELLENCE

... 15 nm
500 nm Mg Film Pd Cap
Si substrate
200 nm Mg Film +9nm Ti
Cap
Si substrate
(stanrorp



Model Systems: Mg/Pd Nanostructured Films

* Films Analyzed Using X-Ray Diffraction (XRD) to Examine Structure/Composiition

. Diffraction Results:

— Mg film with strong (002) texture
No presence of second orientation or phase (e.g. MgO)

— Rocking curve width 5.2°
« Demonstrates Ability to Deposit Highly Textured Mg Thin Films
— Nanostructured model system: proof of concept
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Model Systems: Mg/Pd Nanostructured Films

«  SIMS Depth Profiling Data
— Shows film composition as function of depth from surface
—  Deuterium (2H) signal shows hydriding behavior of Mg thin film
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Model Systems: Mg/Pd Nanostructured Films

 Mg/Pd Multilayer Films:

— Demonstrates atomic level control of composition and catalyst distribution through
controlled sputter deposition

— High interface density ~ 300 m2/cm3
« |deal structures for studies of:

— Catalyst effects
— Interface effects
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Model Systems: Mg/Pd Nanostructured Films

« Small angle x-ray scattering
— Peaks show strong composition modulation

— Analysis allows calculation of bilayer periodicity
+ Samples used to determine tooling factors in sputtering chamber

 Demonstrates Ability to Engineer Material Structures at the Nanoscale
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Model Systems: Mg/Pd Nanostructured Films

 Tooling Factor Determination

— Series of three multilayer samples with different bilayer periodicity

« MgPd_Multilayer1: (60A Mg/ 90A Pd) nominal bilayer periodicity of 150A
MgPd_Multilayer2: (90A Mg/ 60A Pd) nominal bilayer periodicity of 150A

« MgPd_Multilayer3: (60A Mg/ 60A Pd) nominal bilayer periodicity of 120A

— Measured bilayer periodicity (from low angle x-ray reflectivity scans) gives
tooling factors for Mg and Pd

! ' ' ! S - reflects change in
ok © Mg i volume due to interface
® Pd reaction

; Preliminary result:
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Model Systems: Mg,Si Nanostructured Films

« Mg,Si film deposited by codeposition of Mg and Si
 Determine whether sample can be charged with hydrogen
— Collaborative effort with HRL team

* Nanostructured Model System Using Novel Material and Synthesis
Technique
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Model Systems: Mg,Si Nanostructured Films

- Diffraction Data Before Hydrogen Charging In RTA Furnace
— Mg,Si (200) and Pd (111) peaks overlap nearly exactly
.+ Mg,Si (220): 40.156°
- Pd (111): 40.149°
— Sharpness and intensity of peak indicates formation of the Mg,Si phase
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Model Systems: Future Work

Mesoporous silica substrate formed from

decomposition of block-copolymer/TEOS solution * Nanoscale Material Synthesis

Methods For Future Work

— Physical vapor deposition of thin
films

— Thin film growth on mesopourous
silica substrates

— Nanoparticle generation from
condensing vapor

— Mechanical milling

Controlled formation of

nanostructures and nanometer-

scale chemical features

— Investigate effect of nanometer

scale chemistry and structure in
hydrogen-storage systems (e.g. Mg-

Au nanoparticle array catalyst)

formed by deposition onto

mesoporous substrate
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In-Situ Structural Studies: Progress

« Received Sieverts apparatus
Controlled hydrogen charging

Determine hydrogen storage
capacity of model systems

*  Plumbing and hydrogen safety
safeguard installation ongoing
-~ County approved piping

Flammable Jdas cabinet for
compressed hydrogen storage
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In-Situ Structural Studies: Capabilities

Synchrotron Radiation

Facilities at SSRL * Characteristics
— High flux
- — Controlled environment
- » Temperature: RT to 1500 C
: » Control of atmosphere (eg. H,
pressure)

Parallel x-ray detection
— Linear (existing) Area (planned)

. CEET — Rapid collection of diffraction data
— 1-10 second acquisition time
n « Has Potential to Study
4 — Reaction kinetics
k — Hydrogen-induced phase transitions
e 20 — Study these as a function of
o « Storage media size and morphology
K’ « Temperature and environment
Q p
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In-Situ Structural Studies: Future Goals

*  Future Work

— Install hydrogen charging apparatus
on SSRL beamline

— Perform real time structural studies
while material charges

— Analyze data to correlate hydriding
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Kinetic Modeling: Nanoscale Phase Transitions

MgH,

Smaller particles charge and

Hydrogen
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Kinetic Modeling: Nanoparticle Thermodynamic Properties

* Due to interface and surface effects, thermodynamic properties (melting
points, structure, phase formation) of nanoparticles are distinctly different

from that of bulk materials
« Thermodynamics of nanoparticles are largely unknown.

Example: Extended solid solubility
Two phase (nano)  \g Phase
9 o Phase A

~ylr
Cost of interface drives up free /Twop hase (bulk)
energy of two-phase system for |
nanoparticles X —\— ——

— 7

Extended solubility
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Maximum Solubility (% H)

Kinetic Modeling: Extended Solid Solubility of H in Mg Nanoparticles

Interface cost drives up the energy Energy of two-phase system above
of two-phase configuration that of supersaturated solution!
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Ag(kJ/mole)

Kinetic Modeling: Extended Solubility in Mg,Si Nanoparticles

Interface energy cost raises energy of
two-phase nanoparticle
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Predicted solubility for nanoparticle is 1000 x that for bulk

Dramatic consequences for reaction pathways
involving phase changes in nanoparticles (eg
thermodynamically tuned systems such as MgSi)
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Kinetic Modeling: Nanoparticle Nucleation

Nucleation of second phase has interface energy cost
Energy as a function of interface position

Transformation

occurs as interface @

sweeps through &
: < =12 § z
icl = '

particle - -

. o . : P
For r < 3r* nucleation is easier than in bulk! -, 05 0 1e 20

z/t

Lower driving forces needed for

Easier nucleation ——> driving phase transitions

Nanoparticles have:
* Dramatically different thermodynamics
and phase stability
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Upcoming Work and Milestones

Figure 2. Projec t schedul e for tec hnica |l effort by Stanford Univers ity (Go/No-Go sho wn by solid circles )

Year 1 I Year 2 I Year 3 Year 4 Year 5

TASK AND MILES TONE 1|23 4|1 2 |3 4|1 2 (3|41 |23 |41 |2]|3]|4

1. In-situ St ructu ral Studies

In-situ synch rotron diffrac tion studies

Construct /acquire Sieve rts apparatus
for in-situ synch rotron studies

In-situ synch rotron studies of kinetics
and phase transitions du ring

hydr ogen cycli ng

Nano structu red Mg-based alloys

Nano structu red Li -based a lloys I

2. Model System s

Desig n of model sys tem arc hitec ture

Growth of thin film and multilaye r
systems

Structur al studies in M g/cat alyst
multilayers

Hydro gen reaction kinetics in
Mg/catalyst mu ltilayers a ndisl anded
films

Sincle crys tal films

Feedback to material design

3. Kinetic Modeling of
Nan opar ticle Pha se
Tra nsformations

Initial nano-phase models

Theory group interaction for model
parameters

Exper imental guidanc e and material
des ign

Deliverables

Oral and written reports

Contribute to test samples to
independent characte rization lab
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