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Project Overview
• Overall Goals: 

– Provide modeling support for experimental MHCoE group 
members

– Predict thermodynamic and materials properties prior to 
experimental work—guide experimental efforts in new 
materials development

• Modeling Capabilities:
– We use ab initio and classical methods to compute structural, 

electronic, thermophysical and chemical properties of 
materials

– We can calculate:
• Enthalpies and free energies of formation
• Interfacial energies
• Diffusion pathways and kinetics (transition states)
• Reaction pathways and kinetics



MHCoE

Project Overview
• Specific Research Areas:

– Thermodynamic properties of alloys
• Destabilization alloys such as MgH2/Si
• Goal is to compute thermodynamics to aid experimental work and to 

identify mechanisms to find better materials
– Calculation of interfacial energies

• Thin films and nanoparticles potentially have different thermodynamic 
properties

• Goal is to compute energetics and thermodynamics to aid in the 
search for promising nanostructured materials

– Understanding the role of Ti in catalyzing Na3AlH6
• Mechanisms of Ti in catalyzing hydrogenation and dehydrogenation processes 

in alanates is still not completely understood
• Goal is to identify the fundamental mechanisms with the aim of applying them 

to other, more promising materials
– Fundamental Processes in Hydrogenation of Al/NaH

• Hydrogenation of sodium alanate is a model system that is well-studied 
experimentally

• We aim to apply what we learn about hydrogenation to other more 
promising materials
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Administrative Overview

• Project start date: FY05
• Project end date: FY10
• Percent complete: New 

Start

• Access to adequate 
computing resources

• Efficient and accurate 
electronic structure 
algorithms

• Thermodynamic properties 
from first principles

• Requested total: $1.38M
• Cost sharing: 20%
• FY05 $150k (DOE), $37.5k 

(cost share)

Timeline

Budget

Barriers

• Collaborations with all 
experimental groups are sought

• Current collaborators:
– HRL
– GE
– U. Hawaii
– Stanford

Partners
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Objectives
• Compute thermodynamic properties of metal 

hydride alloys, e.g., ΔH for:
– 2MgH2 + Si ↔ Mg2Si + 2H2
– LiBH4 + 1/2MgH2 ↔ LiH + 1/2MgB2 + 2H2
– 4LiH + Si ↔ Li4Si + 2H2
– Many others

• Compute interfacial properties of hydrides
– Metal-hydride interfaces, e.g., Al/NaH
– Surface energies of metal hydrides for nanoscopic

hydrides
– Apply principles learned on model systems, e.g., 

alanates, to more promising novel materials.
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Objectives
• Catalysis processes in hydrides

– Role of Ti in the decomposition of Na3AlH6
– Inducing reversibility through catalysis of alloy 

destablized hydrides
• Fundamental processes in hydrogenation 

Al/NaH and other materials
– Look for common pathways that might be 

applicable to other materials
– What is the role of interfacial transport?
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Approach
• First principles density functional theory (DFT) 

for periodic systems (plane wave)
• Generalized gradient approximation (GGA) for 

the exchange-correlation functional
• Cluster expansion methods for both ground 

state and finite-temperature properties
• Transition state finding methods for reaction 

and diffusion problems
– Nudged elastic band method
– Dimer method
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Results
Hydride Alloy Structure & Energetics

• We have computed structural (lattice 
parameters) and energetic (total energies) for 
a number of different alloys using GGA DFT

• The energies were used to compute enthalpy 
of reaction for four different destabilization 
reactions

• Calculations were compared with experiments 
to assess the accuracy of GGA DFT for these 
systems

• This is a validation of our technique!
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LiBH4

Lattice 
Parameter

a (Å) b (Å) c (Å)

Experimental* 7.173 4.434 6.798

DFT-GGA 7.209 4.324 6.422

Orthorhombic Lattice

* L. Schlapach and A. Zǜttel, Nature (London) 414, 353 (2001)

Calculations are in 
good agreement with 
experiments!
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MgH2

Lattice 
Parameter

a (Å) b (Å) c (Å)

Experimental* 4.517 4.517 3.021

DFT-GGA 4.466 4.466 2.992

Body centered
Tetragonal Lattice

* W.M. Mueller, J.P. Blackledge and G.G. Libowitz, Metal Hydrides (Academic Press, New 
York 1968)

Calculations are in 
good agreement with 
experiments!
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MgB2

Lattice 
Parameter

a (Å) c (Å)

Experimental* 3.084 3.522

DFT-GGA 3.068 3.520

Hexagonal Lattice

* R.W.G. Wycoff, The Structure of Crystals (The Chemical Catalog Company Inc., New 
York 1931)

Calculations are in 
good agreement with 
experiments!
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LiH

Lattice 
Parameter

a (Å)

Experimental* 4.083

DFT-GGA 3.93

NaCl Structure

* R.W.G. Wycoff, The Structure of Crystals (The Chemical Catalog Company Inc., New 
York 1931)

Calculations are in 
good agreement with 
experiments!



MHCoE

Mg2Si

Lattice 
Parameter

a (Å)

Experimental* 6.39

DFT-GGA 6.361

Cubic Anti-fluorite Structure

* R.W.G. Wycoff, The Structure of Crystals (The Chemical Catalog Company 
Inc., New York 1931)

Calculations are in 
good agreement with 
experiments!



Si, Mg, Li

Lattice 
Parameter

a (Å)

Exp* 3.51

DFT-GGA 3.401

BCC Lattice

Lattice 
Parameter

a (Å)

Exp* 5.43

DFT-GGA 5.46

Diamond Structure

Lattice 
Parameter

a (Å) c (Å)

Exp* 3.209 5.210

DFT-GGA 3.228 5.083

Hexagonal Lattice

* R.W.G. Wycoff, The Structure of Crystals (The Chemical Catalog Company Inc., New York 1931)
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Enthalpy Change for Reactions
)()()(2)(2)( 2242 gHsMgBsLiHsLiBHsMgH ++→+

Tabulated* DFT-GGA

ΔH/mol H2(KJ/mol) 45.96 46.2

)()()( 2 gHsLisLiH +→

)()()(2 222 gHsSiMgSisMgH +→+

)()()( 22 gHsMgsMgH +→

Tabulated* DFT-GGA

ΔH/mol H2(KJ/mol) 37.24 37.1

Tabulated* DFT-GGA

ΔH/mol H2(KJ/mol) 181.26 183.3

Tabulated* DFT-GGA

ΔH/mol H2(KJ/mol) 76.15 64.1

*J. D. Cox, D. D. Wagman, and  V. A. Medvedev, CODATA Key Values for 
Thermodynamics (HPC., New York, 1989 )

Enthalpies can 
be calculated 
with good 
accuracy from 
DFT
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Conclusions

• DFT is a very effective tool for predicting the 
enthalpy of reactions

• DFT can be used to compute enthalpies for 
which no tabulated or experimental data are 
available, provided the lattice structure is 
known

• Calculations can be used to screen reactions 
with high enthalpy without actually conducting 
any experiments

• We can predict which materials may be 
suitable as hydrogen storage devices based 
on calculated enthalpy changes
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Results
Reversibility of Destablized Hydrides

• Vajo and coworkers at HRL have found that 
alloying very stable metal hydrides can 
substantially increase the release of hydrogen
– 2MgH2 + Si → Mg2Si + 2H2

• However, the reverse reaction, while 
thermodynamically favorable, is not observed
– Mg2Si + 2H2 → 2MgH2 + Si

• We are studying the adsorption and 
dissociation on Mg2Si to identify the kinetic 
barriers
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Results
Reversibility of Destablized Hydrides

Initial calculations using plane wave DFT to find adsorption 
geometries and energetics

H2 is on the Si site
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Results
Reversibility of Destablized Hydrides

• Four different 
adsorption sites 
have been 
identified
– Si top
– Mg top
– Mg-Si bridge site
– Hollow site

• All sites lead to a 
weakly adsorbed 
(physisorbed) 
state for H2
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Conclusions

• Molecular hydrogen adsorbs very weakly 
through physisorption (van der Waals
interactions) on the Mg2Si surface

• The binding energies are on the order of 
0.1 eV

• Dissociation of H2 on the Mg2Si surface 
must have a substantial energy barrier
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Future Work

• Calculate dissociation pathways for H2 on 
Mg2Si

• Calculate binding energies and 
adsorption barriers for atomic H on Mg2Si

• Consider catalytic pathways to facilitate 
the reversibility of Mg2Si + 2H2 → 2MgH2
+ Si
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