

Thermodynamically Tuned Nanophase Materials

Gregory L. Olson and John J. Vajo HRL Laboratories, LLC Malibu, CA

– A Participant in the DOE Metal Hydride Center of Excellence –

May 23, 2005

DOE 2005 Hydrogen Program Annual Review, Washington, D.C., May 23-26, 2005

This presentation does not contain any proprietary or confidential information

Project ID # STP28

Timeline

- Project start date: FY05
- Project end date: FY09
- •Percent complete: New Project

Budget

- Expected Total Project Funding:
 - Phase One 3 years: \$1.65M
 - DOE Share: \$1.20M
 - Contractor Share: \$0.45M
 - Phase Two 2 years: \$1.1M
 - DOE Share: \$0.8M
 - Contractor Share: \$0.3M
- Funding for FY05: \$400K (DOE), \$150K (cost share)

Barriers

Weight and volume Efficiency Hydrogen capacity and reversibility

Targets

Gravimetric capacity: >6% Volumetric capacity: > 0.045 kg H₂/L Min/Max delivery temp: -30/85°C

Partners

- Participant in DOE Metal-Hydride Center of Excellence; collaborations with MHCoE partners on synthesis, modeling, and characterization
- Coordinator of sub-team on hydridedestabilized nanophase materials (Caltech, JPL, Stanford, U. Hawaii)

	HRL Labs	Caltech		U. Hawaii		Stanford/SSRL		JPL
	Greg Olson/John Vajo	Channing Ahn		Craig Jensen		Bruce Clemens		Robert Bowman
•	Sub-team coordination Hydride destabilization strategies Nanoparticle synthesis Hydrogen cycling: test and characterization	 Nanoparticle synthesis (gas condensation) Materials Characterizatio (TEM, XRD) 	n	 Nanostructure catalyst development New synthesis routes 	d ·	 In situ, real-time synchrotron XRD of H-induced phase changes Nanoparticle synthesis Solid state reaction kinetics Thin film reactions 	•	Materials development (performance / aging properties) Reaction kinetics and metal atom motion Concept testbed
	Other partners in MHCoE will also contribute in areas of nanostructure synthesis, diagnostics and modeling/simulation							

To develop and demonstrate a safe and cost-effective light-metal hydride material system that meets or exceeds the DOE goals for onboard hydrogen storage

- To implement hydride destabilization strategies for light-metal hydrides containing Li and Mg
 - > Benchmark results from destabilized Mg-Si system against conventional Mg hydrides
 - > Extend to higher capacity systems, including: $LiBH_4 + MgH_2$ and $LiBH_4 + Mg(X)$
 - > Down-select specific systems for continued study and system demonstration
- To develop methods for efficient and controlled synthesis of destabilized nanophase metal hydrides and to employ the materials in reversible hydrogen storage system
 - Utilize both "top-down" (e.g., energetic ball-milling) and "bottom-up" (direct) synthesis routes (MHCoE collaboration)
 - > Characterize sorption behavior in nanostructured systems (MHCoE collaboration)
 - > Evaluate role of contaminants and particle sintering develop mitigation strategies

Approach:

- Hydride Destabilization and Nano-engineering

Alter Thermodynamics by Hydride Destabilization

Reduce energy (temperature) needed to liberate H₂ by forming dehydrogenated alloy

- System cycles between the hydrogen-containing state and the metal alloy <u>instead</u> of the pure metal
- Reduced energy demand means lower temperature for hydrogen release

Enhance Kinetics by Nano-engineering

Increase H-exchange rate by decreasing particle size

- Overall rate controlled by hydrogen diffusion distance
- H-exchange much faster in nanoscale particles than in bulk

- Destabilized systems that satisfy all thermodynamic requirements for practical on-board storage not yet developed; heat removal during re-fueling remains an issue
- Dependence of nanoparticle size on diffusion rate unknown
- Efficient synthesis methods for light-metal alloy nanoparticles not yet established
- Effects of nanoparticle sintering/agglomeration during cycling reactions not characterized
- Efficient method for catalyzing nanoparticle reactions not developed

MgH₂ / **Si** – Prototype Destabilized Hydride System –

Equilibrium conditions predicted by thermodynamic modeling software (HSC and CALPHAD) for MgH₂/Si system in desired temperature and pressure range

Demonstrate reversibility

- > Initiated work with Sandia (K. Gross/E. Ronnebro) using high pressure Sieverts system
- Collaboration with Stanford U. (B. Clemens, et al.) on Mg₂Si thin films formed by sputtering (use as model system to assess reversibility)

Nano-engineer to reduce diffusion distances

- Collaboration with Caltech (C. Ahn, et al.) on generation of nanostructured Mg₂Si by gas phase condensation
- > Initiated work (HRL) on alternative routes for synthesis of nanoscale Mg_2Si
- Developed approaches for forming MgH₂ in nanostructured templates

Characterize thermodynamics and H-diffusion

- > CALPHAD calculations (P_{eq} vs temp.) (*NIST-U. Kattner*)
- Collaboration with Carnegie-Mellon U. (D. Sholl et al.), U. Pittsburgh (K. Johnson et al.), and U. III (D. Johnson) on thermodynamic barriers/intermediates and phase formation mechanism(s)

MgH₂ / Si System – Nanoscale Synthesis Work in Progress –

<u>HRL</u>

Metathesis reactions in pressure vessel to synthesize Mg₂Si:

- > $4Mg + SiCl_4 \Rightarrow Mg_2Si + 2MgCl_2$ (high vapor pressure)
- > 2MgCl₂ + SiCl₄ + 8Na ⇒ Mg₂Si + 8NaCl (stronger reducing agent)

• Formation of MgH_2 in mesoporous hosts:

- Infiltrate porous alumina or carbon aerogels with dibutyIMg and thermally decompose:
 - $Mg(C_4H_9)_2 \Rightarrow 80\% MgH_2 + 10\%$ [Mg(C_4H_8)]_n + 10% Mg
 - Alternatively, decompose Grignard compounds to form MgH₂, Mg, and MgX₂
- Synthesize Si nanoparticles and react with Mg(g) ⇒ Mg₂Si (in pressure vessel)
- Exploring plasma-based approaches for nanoparticle generation

MHCoE Partners

- Form Mg and Mg₂Si nanostructured films by sputtering (B. Clemens–Stanford)
 - > 1-D nanostructured model system
 - > Cap with Pd and/or Ti \Rightarrow Catalyst; O₂ barrier
- Create Mg, Mg₂Si nanoparticles by gasphase condensation (C. Ahn-Caltech)
 - > Mg nanoparticles <100 nm demonstrated</p>
 - Exploring direct synthesis of Si nanoparticles
- Initiate collaboration with Z. Fang (U. Utah) on use of Chem. Vapor Synthesis process to form Mg₂Si powders

*LiBH*₄ / *MgH*₂ – New system (11.4 wt. % and 0.095 kg/L) –

Formation of MgB_2 estimated to reduce T(1 bar) by ~ 240 °C

- Reversibility recently demonstrated*
- However, operating temperature is high and kinetics slow
- Strong candidate for nano-engineering and catalyst development

*J. Vajo, S. Skeith, and F. Mertens, Reversible Storage of Hydrogen in Destabilized LiBH₄, J. Phys. Chem. B, <u>109</u>, 3719-3722 (2005).

• Explore reaction fundamentals

- Nucleation and phase formation, rate-limiting steps, intermediate species, structure (Stanford, JPL, U.III. CMU/Pitt)
- > CALPHAD calculations of equilibrium pressures/phase diagrams (NIST)

Improve kinetics using nano-engineering

- Explore solution-based synthetic methods and mechanical attrition (energetic ball milling) for nanoparticle/nanocrystal formation (HRL Labs)
- > Measure sorption characteristics (*HRL/JPL/Caltech/Stanford/Other MHCoE*)
- > Explore kinetics phenomena unique to nanoscale (Stanford)
- Identify and optimize catalyst(s) for reversible borohydride reactions (U. Hawaii, HRL)

LiBH₄ + MgX

- The reversible system 2LiBH₄ + MgH₂ = 2LiH + MgB₂ + 4H₂(11.4 %) established.
- Analogous systems include: LiBH₄ + MgX (where X = F, CI, OH, O, S, Se, CO₃, Si, etc.)
 - > 8 destabilization reactions identified and characterized (HSC modeling)
 - H-capacities ranging from 5.4-9.6 wt.%, T(1 bar) from -10°C to 430°C

 $LiNH_2$ ($LiBH_4$) + C (Si)

- Destabilize LiNH₂ and LiBH₄ using C or Si
 - > 9 destabilization reactions identified; 1 characterized using HSC modeling
 - Thermodynamic properties of reaction products largely unknown (modeling underway with MHCoE partners - Carnegie Mellon U., Univ. Pittsburgh)

Hydride Destabilization

– Progress and Goals –

- Destabilization provides pathway to achieving desired temperature and pressure
- Ideal destabilized system not yet established

