

New Concepts for Optimized Hydrogen Storage in MOFs

Omar M. Yaghi and Adam J. Matzger Department of Chemistry University of Michigan Ann Arbor, MI 48109

May 23, 2005

This presentation does not contain any proprietary or confidential information

Project ID # STP52 Yaghi

Overview

Timeline

- Project start date
 1/1/2005
- Project end date
 12/31/2008
- Percent complete 2%

Budget

- Total project funding
 - DOE share: \$1.60M
 - Contractor share: \$0.35M
- Funding received in FY04
 - \$0.00
- Funding for FY05
 - \$37,500 (estimated)

Barriers

- Technical barriers addressed
 - B) Weight and Volume
 - C) Efficiency
 - M) Hydrogen Capacity and Reversibility
- Technical targets by YR 2010
 - Gravimetric capacity: 6.0%
 - Volumetric capacity: 4.5%
 - Operating ambient temp.: -30/50 °C

Partners (planned FY06)

- Juergen Eckert (Los Alamos)
- Randall Q. Snurr (Northwestern University)
- Joseph T. Hupp (Northwestern University)

Objectives

To develop next generation, highly porous metalorganic framework materials (MOFs) that meet or exceed DOE targets for on-board H₂ storage.

 \Box Improve mass and volumetric H₂ density in MOFs.

- Utilize strategies for design of materials with high thermal stability and architectural stability.
- Utilize new concepts for synthesis of materials with extraordinary surface areas (>2000 m²/g)
- Develop strategies for synthesis of MOFs having minimal open space but very high surface areas.

 \Box Employ MOFs in reversible H₂ storage systems.

- Measure H₂ uptakes under full range of temperatures and pressures as specified in the DOE freedomCAR guidelines.
- Down-select best materials for scale-up.

- Implement three major strategies that minimizes open space while increasing total surface area for H₂ binding.
 - Increase surface areas by increasing exposed edges in framework comprising MOF.
 - Use catenated networks.
 - Impregnation of large pores to produce new internal sorption sites and higher surface area.

 \Box Equilibrium H₂ uptake as a function of structure.

- Measure H₂ uptakes under full range of conditions designated in DOE YR 2010 targets.
- Use Raman spectroscopy to elucidate H₂ interaction with new materials.

MOFs as H₂ Storage Materials

Synthetic Strategy to High Surface Area MOFs

Exposing latent edges dramatically increases surface area.

H₂ Storage Capacity at RT & 10 bar

Structure of Zn₄O(1,3,5benzenetribenzoate)₃

MOF-177: S_A (Langmuir) = 4,500 m²/g, V_p = 1.59 cm³/g

Low Pressure, Low Temperature H₂ Sorption

Large Free Volume in Catenated Networks: The role of Secondary Building Units

Types of Catenation

Structure of Interwoven Cu₃(1,3,5benzenetribenzoate)₂(H₂O)₃

MOF-14: S_A (Langmuir) = 1,502 m²/g; $V_p = 0.53$ cm³/g

Structure of Interpenetrated Tb₂(4,4'-azodibenzoate)₃[(CH₃)₂SO]₃

MOF-9: V_{Free} = 71% $V_{Crystal}$; 16 [(CH₃)₂SO]/unit cell

Interpenetrated Isoreticular MOFs

Low Pressure, Low Temperature H₂ Sorption

Reversible H₂ sorption in IRMOF-11 at 77K

Impregnation of MOF-177

Astrazon orange

Astrazon Orange R 16 molecules per unit cell

Nile red

Nile Red 2 molecules per unit cell

Reichardt's dye

Reichardt's dye 1 molecule per unit cell

Inclusion of C₆₀ in MOF-177

Future Work

TASK	2005	2006	2007	2008
Task 1: High Surface Area MOFs Synthesize new polycyclic organic links Synthesize MOFs with minimal fused edges Reduce pore dead volume by forming catenated nets Reduce open space in pores by inclusion of guests with sites for H ₂ binding	2003	Go/No-Go poir	2007	2000
 Task 2: Polarization Effects Functionalization of MOFs with group of varying polarity Correlate H₂ uptake to electron donating/withdrawing ability of groups 			15	
 Task 3: Modeling H₂ Uptake (Northwestern) Quantitate charge density of organic linker, compare to nanotubes Screen promising candidates for inclusion Quantitate H₂ interaction in MOFs 				
Predict H ₂ isotherms Task 4: Characterization & Testing				

Please list any publications and presentations that have resulted from work on this project.

□ No publications resulting from current funding.

The most significant hydrogen hazard associated with this project is:

- High exposure to H₂ gas with possibility of personal injury due to decreased oxygen content in the atmosphere.
- ➡ High concentrations of H₂ may pose a fire or explosion in and around instrumentation.

Our approach to deal with this hazard:

- \Box Dedicated a single laboratory for all H₂ experiments.
- Installed active ventilation snorkles from laboratory hoods to all instrumentation consuming/ releasing H₂.
- □ Installed atmospheric H_2 detector (% level detection) outfitted with an alarm in the dedicated laboratory.

Acknowledgements

