Hydrogen Absorption on Irradiated Carbon and Other Materials

Luis Muga & Barbara G.-Muga TOFTEC, INC. 05/23-26/05

This presentation does not contain any proprietary or confidential information.

Project ID #STP54

Overview

Timeline

Budget

Project start date:

2005

Project end date:

2009

• Funding for FY05:

not yet funded

Consultant

Dr. R.J. Hanrahan,
 University of Florida

Objectives

To investigate a novel approach for enhancing the physi-/chemi-absorption of hydrogen on selected powdered forms of carbon and boron nitride, with the goal of meeting DOE 2010 guidelines for hydrogen storage.

Approach

The electronic environment at surface and interior sites is excited and activated by penetrating radiation thus preparing the sites for quasi-bonding of hydrogen.

Technical Accomplishments/ Progress/Results

- The experimental set-up (gas handling manifold, pressurized sample cartridges and modification of irradiation facility) has been completed.
- System calibration is underway.
- The first sample irradiation is now in progress.

Future Work

- Measure the amount of retrievable hydrogen gas (as a function of temperature) upon loading (at reasonable temperatures and pressures) on to irradiated powders.
- Extend approach to other carbon allotropes and boron/nitrogen containing solids.

Hydrogen Safety

The most significant hydrogen hazard associated with this project is:

Slow hydrogen leak in gas manifold/sample cartridge and valves/regulators resulting in the accumulation of a pocket of combustible hydrogen.

Hydrogen Safety

Our approach to deal with this hazard is:

- Use adequate room ventilation with exhaust to exterior.
- Place hydrogen sensors/alarms at appropriate sites in laboratory area.
- Maintain a regimen of safe laboratory practices.