

Innovation for Our Energy Future

NREL Activities in DOE Carbon-based Materials Center of Excellence

A.C. Dillon, P.A. Parilla, Y. Zhao, Y.-H. Kim, T. Gennett[†],
C. Curtis, J.L. Blackburn, K.E.H. Gilbert, J.L. Alleman,
K.M. Jones, S.B. Zhang, M.J. Heben

National Renewable Energy Laboratory, Golden CO [†]Rochester Institute of Technology, Rochester NY May 25, 2005

This presentation contains no proprietary information

Overview: Timeline and Budget Timeline

- Work at NREL since FY93
- Center of Excellence start date: FY05
- Center of Excellence end date: FY09
- Percent complete: 10%

Budget

- Project funding
 - \$27.5 M for five-year Center of Excellence
 - \$2.5 M Contractor share (20% of Contractor budget)
 - \$2 M in FY04 for NREL
 - \$2 M in FY05 for NREL

Overview: Barriers & Targets

General

A. Cost.

B. Weight and Volume.

C. Efficiency.

E. Refueling Time

Reversible Solid-State Material

M. Hydrogen Capacity and Reversibility.

N. Lack of Understanding of H Physi- and Chemisorption.

O. Test Protocols and Evaluation Facilities.

Crosscutting Relevance

Compressed Gas Systems Barrier H: Sufficient Fuel Storage for Acceptable Vehicle Range.

Off-Board Hydrogen Storage Barriers S & T: Cost and Efficiency

DOE 2010 Technical Targets for Storage System

- Gravimetric 0.06 kg H₂/ kg

- Volumetric 0.045 kg H_2 / kg

Overview:

CoE Interactions & Collaborations

9 university projects (at 7 universities), 4 government labs, 1 industrial partner

Also: IEA Annex 17 (R. Chahine, K. Ross), SwRI, Stanford GCEP, U. Minn. IREE, NIST, NASA, Virginia Commonwealth U. (G. Glaspell), Chinese Academy of Sciences (H.-M. Cheng), Argonne National Lab (R. Ahluwalia), synergy with two BES projects at NREL Organization of Conferences: IPHE (Lucca, 6/'05), MRS (Fall '04, Fall '05, and Spring '05)

Objectives

Themes of CbHS Center of Excellence

- Develop conducting and boron/carbon polymers, MOFs, carbon nanohorns, nanotubes and aerogels, and carbonmetal hybrid nanomaterials for on-vehicle storage
- Design and synthesize materials that bind hydrogen as either (i) weakly and reversibly bound atoms or (ii) as strongly bound molecules.
- Synthesize, test, develop light materials with high densities of appropriate binding sites per volume to meet DOE goals
- New concepts (e.g. conformal tanks with low T moderate P (<100 bar) operation, nanotube/hydride mixtures)

Continuum of H Binding Energies

and three Centers of Excellence

CbHS CoE: Nanostructural design of electronic & bond strain effects

Binding Energy Impacts System Design

A large binding energy will lead to energy penalties during charge & discharge, prohibit on-board recharging, and reduce system capacities (heat exchangers)

NREL National Renewable Energy Laboratory

Approach: Reproducible Activation

- Probe-sonicated SWNT/alloy hybrid data was scattered
- Up to 8 wt% H on tube fraction
- Contribution of alloy measured to be 2.5 wt% H
- Maximum on alloy 2.99 wt% (literature) or 3.4 wt% (TiH₂ fraction @ 4 wt%)
- Generated 3 wt% samples consistently with optimization
- Employed surfactants and cooling during sonication
- XRD reveals lack of alloy oxides
- Unoxidized alloy fraction adsorbs ~3.8 wt% H (Feb. 05 milestone)
- No significant uptake on tubes

Accomplishment: Measured Uptake of Alloy/Alloy Oxide vs Processing

- Oxide coating on alloy particles is a function of processing
- 3.8 wt% on pure alloy measured for the first time

4 wt% H milestone will likely not be met with this approach (EOFY05)

Approach: Reproducible Activation

MWNTs by hot-wire CVD (A. Dillon et al.)Fe is in intimate contact with aromatic carbon

Peak desorption temperature does not shift with coverage:

 first order desorption adsorbed molecular H₂ Desorption activation energy: $ln(T_m^2/\beta) = E_d/RT_m$

 binding energy of ~54 kJ/mol.

Microscopy by Y.-W. Lee, B.M. Clemens (Stanford)

Activation without Metal-Hydride Incorporation

As-synthesized MWNTs vs Fe powder control Fe is not a known metal hydride

Normal Dose: Degas 825 K in vacuum, 500 Torr H_2 at room temperature **Reduction:** Anneal to 775 K in 100 Torr H_2 for 10 min., Degas 825 K in vacuum, 500 Torr H_2 at room temperature. **Increase capacity to ~ 0.035 wt%.**

NREL National Renewable Energy Laboratory

Organometallic, Solution Phase Synthesis

UV photolysis of Co₂CO₈ w SWNTs

Low capacity, but proof of concept

Approach: Rational Design of Adsorbents

Calculated Structures of Hydrogen Saturated Cyclopentadiene (Cp) - [MHx] Complexes

18-e Rule and Cp-TM Binding

	Sc	Ti	V	Cr	Mn	Fe	Со	Ni
n _v	3	4	5	6	7	8	9	10
N _H	10	9	8	7	6	5	4	3
$E_{b}(kJ)$	360	371	333	221	258	285	314	389

- 18-e rule: n_v+N_H+5=18
 n_v: number of valence electron in metal atom;
 N_H: number of hydrogen atoms bound;
 5: number of π electrons in the Cp ring.
- Sc binding to Cp: second largest E_b .

Reversible 6.7 wt% Storage

Stable "host" material

Energetics of Cp:TM-H₂ Binding

This GGA method yielded 80 kJ/mol for H_2 binding on Cr(CO)₃(PH₃)₂ vs experimental value 71 kJ/mol (G.J. Kubas, J. Organo. Chem. 635, 37, 2001)

Integration with Carbon Frameworks

To avoid polymerization.....

Cp[ScH₂] chain

...transfer TM:H cluster to carbon framework (i.e. the pentagons of C_{60})

Route to 7 wt% Reversible Storage with Carbonbased Adsorbents

$C_{60}[ScH_2 (H_2)_4]_{12}$

Metal-coated Fullerenes

Stable <u>Scandium</u> organo-metallic complex represents a compound that stores a total amount of hydrogen at 8.7 wt%, 7.0 wt% reversibly.

Minimum Energy Structure with regions around the 5-membered rings that have aromatic character.

Without TMs, C₆₀ has aromatic character around the 6-membered rings.

J. Poater, M. Duran and M. Sola Int. J. Quant. Chem. 98 (2004) 361

Y. Zhao, Y.-H. Kim, A.C. Dillon, M.J. Heben, and S.B. Zhang, PRL 94, 155504 (2005)

NREL National Renewable Energy Laboratory

Route to 8.8 wt% Reversible Storage with B-doped C₆₀

 $\begin{array}{ccc} & & 60H_2 \\ C_{48}B_{12}[ScH]_{12} & \xrightarrow{60H_2} \\ C_{48}B_{12}[ScH(H_2)_5]_{12} \end{array}$ One more electron transferred from a Sc to the pentagon

a) Enhanced Sc-C₆₀ binding; b) Increased capacity; c) 43 kg H_2/m^3 without efficient packing (conformal)

Reversible Storage at Room Temperature

- Charge/release is switched at ~ 1 atm, T=300K;
- Storage materials are stable

Preliminary Data on an Sc / Carbon System

- Laser vaporization of graphite target doped with Cp₃Sc
- Enhanced low temperature adsorption peak
- Capacity must be evaluated with overpressure

Substitutional Doping: DFT within Local Density Approximation

- LDA typically overbinds, whereas GGA typically under binds
- MP2 study showed LDA results are significantly closer¹
- State-of-the-art fixed node, diffusion quantum Monte Carlo (QMC) calculations, performed by A. Williamson (LLNL), agrees

¹Y. Okamoto et al., J. Phys. Chem. B 105, 3470 (2001).

Synthesizing Boron-doped Nanostructures

CVD

- Sources
 - $(C_6H_5)_3B$
 - $(CH_3)_3 N \cdot BH_3$
 - $(CH_3)_3B_3O_3$
- HWCVD
 - Decomp. Of B source and ferrocene
- CVD
 - Decomp. Of B source over Fe-Mo catalysts

Laser and Arc

- Laser ablation dopants
 - B: low yield NTs
 - BN: low yield NTs
 - B₄C: low yield NTs
 - Gas phase dopants: onions and MW cages
 - high yield SWNTs with certain catalysts
- Arc dopants
 - High yield SWNTs with certain catalysts

Adsorption on B-doped Nanostructures

Bamboo-like MWNTs from HWCVD

TPD spectrum shows two high energy binding sites on MWNTs in addition to low-T adsorption

Conventional CVD using $(CH_3)_3N \cdot BH_3$

Increase in low-T adsorption in purified Bdoped SWNTs

Capacity increase must be evaluated with overpressure.

Advances in Measurement Techniques

Variable Calibrated Leak for High Throughout, Quantitative TPD

Using TiH₂ to Test Calibration

From SwRI/U. Penn review of NREL techniques

Blind experiments showed calculation of the							
correct weight of TiH ₂ with $< 2\%$ error							
Loaded amount of TiH ₂	Calculated Amount	Error					
1.56 mg	1.54 mg	1.3 %					
1.76 mg	1.73 mg	1.7 %					

High Throughput Analysis with External Sample Cell

Multiple external cells can be connected to one manifold, with one mass spectrometer, for multi-sample, high throughput measurement

High Throughput, Accurate H₂ Measurement

Six samples of TiH₂ measured within 2% accuracy in 6 hours Meets milestone (6 samples, within 5%, in 24 hrs)

High Throughput, Multi-station Apparatus

- Current set-up has four stations and is expandable
- Will operate 24 hrs/day when fully automated
- Offers measurement support to Center partners

Re-visiting Low T, Moderate P (< 100 bar) Adsorption Storage

"Activated carbon materials have been projected to meet and exceed density targets... if concurrent increases in hydrogen storage capacity and carbon density can be achieved. These two goals are in conflict for conventional porous materials such as activated carbons. However, the desired results may be obtained if the void spaces....can be organized ... The synthesis of carbon nanotubules indicate that such organization is possible."

in Proceedings of the 1993 DOE/NREL Hydrogen Program Review, pg 79.

National Renewable Energy Laboratory

Re-visiting Low T, Moderate P (< 100 bar) Adsorption Storage

Seeking the "holy grail" for adsorbents:

Meeting DOE goals at ambient T and a few atmospheres However:

Recent progress suggests that relaxing one (P or T) requirement can allow 2005 goals to be met $Q_{st} \sim 0.12 \text{ eV}$

8 wt% on SWNTs at 80K, 100 bar Ye, et al., APL 74, 2307 (1999)

6 wt% on SWNTs at 77K, 2 bar Pradhan, et al., JMR **17**, 2209 (2002)

Courtesy of R. Chahine, UQTR Hydrogen storage on SWNTs at 77 K and 1 bar

			600 °C		1000 °C	
Acid	S _{spec} m²/g	H ₂ ads wt. %	S _{spec} m²/g	H ₂ ads wt. %	S _{spec} m²/g	H ₂ ads wt. %
HF	635		1555		806	
HCI	878		1047		829	
H ₂ SO ₄	690		1084		430	
HNO ₃	40		375		193	

 Both chemical and heat treatments result in an increase in the number and size of pores.

NREL Measurements at Low T, Low P

Purified arc-generated SWNTs

- Isotherms with Quantochrome BET apparatus
- Single-point measurements in home-built volumetric
- Un-optimized materials

May have Potential to Meet 2005 System Targets

Preliminary System Analysis by Ramesh Ahluwalia, Argonne

Engineered AC to Meet DOE-2005 Goals

AX-21: Commercially available AC, 300 kg/m³ bulk density

Densified AX-21: 700 kg/m³ bulk density

EAC-05: Hypothetical AC engineered with physical properties to meet 2005 targets of 4.5 wt% and 36 kg/m³.

Development effort: 1 < 2 < 3 < 4 < 5 < 6.

Т	Р	ΔT	AX-21		Densified AX-21		EAC-05	
(K)	(bar)	(K)	wt% H ₂	kg/m ³	wt% H ₂	kg/m ³	wt% H ₂	kg/m ³
77	50	0	3.2	11.6	1.6	10.6		
77	50	50	5.0	19.5	3.2	23.0	4.5 ²	36
77	100	0	5.4	21.7	2.5	17.4		
77	100	50	7.1	29.6	4.1	29.9	4.5 ¹	36
150	50	0	2.3	8.1	1.4	9.4	4.5 ⁶	36
150	50	50	2.8	10.0	1.8	12.4	4.5 ⁵	36
150	100	0	3.9	14.9	2.2	15.8	4.5 ⁴	36
150	100	50	4.3	16.8	2.6	18.8	4.5 ³	36

Office of Science

U.S. Department

of Energy

High Material Density SWNT Arrays

Can we achieve 6 - 8 wt% (80 K & 10 atm), with a bulk density approaching 1000 kg/m³ (1 g/cc) ? *Potential winning technology*

Comments from Last Year's Review

- 4 wt% capacity as a target is inadequate should be revised to at least 8 wt% for any chance of success.
 - Interim target (FY2006) is 6 wt%
 - Developed rational approach to 8 wt% adsorbents
- Try to get industry involvement in collaborations.
 - Air Products and Chemicals, Inc., is leader in hydrogen technologies
 - Carbon Nanotechnologies, Inc., is leader in carbon nanomaterials
 - Connection through NREL's vehicle group connects the Center to numerous vehicle and vehicle component manufacturers
- Scope should be refocused beyond carbon nanotubes.
 - Scope now includes a wide variety of carbon-based materials

Comments from Review (cont.)

- Need to list what a system based on carbon materials would contain (including masses and volumes).
 - Work has begun to scope-out system from a thermal/fluid/mechanical & packaging point of view
 - Working with Vehicle Group at NREL and R. Ahluwalia at Argonne
- Cost needs to be assessed.
 - Analysis effort planned with M. Mann & M. Ringer at NREL
 - Will be active with Tiax effort
 - Will build from cost estimate of scale-up of SWNT production previously done by NREL using input from industry (APCI, CNL and others)
- Focus totally on making a sample others can measure 4% storage in.
 - This is the main focus
- Cryo work is an appropriate addition.
 - Have expanded work in this area.

Future Work

FY05:

- Support integration of and provide technical guidance to DOE's Carbon-based Hydrogen Storage Center of Excellence
- Develop methods for reproducible sample preparation of carbon hybrid materials
- Investigate low T, moderate P approaches
- Key milestone is 4 wt% at external lab (SwRI) by Oct. 2005

FY06:

- Work with Center Partners to develop carbon materials solutions to meet FY2010 DOE storage goals
- Key milestone is 6 wt% at external lab (SwRI) by Oct. 2006

NREL Publications

- 1. "Non-dissociative adsorption of H₂ molecules in light-element doped fullerenes", Y.-H. Kim, Y. Zhao, A. Williamson, M.J. Heben, and S. B. Zhang, submitted to *Physical Review Letters*.
- 2. "Hydrogen storage in novel organometallic bucky balls", Y. Zhao, Y.-H. Kim, A.C. Dillon, M.J. Heben, and S. B. Zhang, PRL 94, 155504 (2005).
- 3. "Experimental Gibbs free energy considerations in the nucleation and growth of single walled carbon nanotubes", L.M. Wagg, G.L. Hornyak, L. Grigorian, A.C. Dillon, K.M. Jones, J.L. Blackburn, P.A. Parilla and M.J. Heben, to appear in *J. Phys. Chem. B*
- 4. "Systematic inclusion of defects in pure carbon single-wall nanotubes and their effect on the Raman D-band" A.C. Dillon, P.A. Parilla, J.L. Alleman, T. Gennett, K.M. Jones & M.J. Heben. *Chemical Physics Letters* 401, 522-528 (2005).
- 5. "Generalized Kubas complexes as a novel means for room temperature molecular hydrogen storage", Y.-H. Kim, Y. Zhao, M. J. Heben, and S. B. Zhang, to be published in Hydrogen Storage Materials (Materials Research Society Symposium Proceedings).
- 6. "Discovering the mechanism of hydrogen adsorption on aromatic carbon nanostructures to develop adsorbents for vehicular applications", Y. Zhao, Y.-H. Kim, S. B. Zhang, J.L. Blackburn, A.C. Dillon, P.A. Parilla, A.H. Mahan, J.L. Alleman, K. M. Jones, T. Gennett, K.E.H. Gilbert, Y-W. Lee, B.M. Clemens and M.J. Heben, to be published in Hydrogen Storage Materials (Materials Research Society Symposium Proceedings).
- 7. "Hydrogen adsorption properties of single wall carbon nanotube-organometallic hybrid materials", T. Gennett, C. Curtis, J.L. Blackburn, K.M. Jones, J.L. Alleman, A.C. Dillon, M.J. Heben, to be published in Hydrogen Storage Materials (Materials Research Society Symposium Proceedings).
- 8. "Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials" A.C. Dillon, M. Yudasaka & M.S. Dresselhaus. *Journal of Nanoscience and Nanotechnology* 4, 691-703 (2004).
- 9. "High yield nanotube synthesis in a hot-zone arc-discharge apparatus", T. Gennett, C. Engtrakul, J. Blackburn, K. Franz, J. Alleman, K. Jones, A. Dillon, M. Heben, manuscript in preparation.
- 10. "Rapid, accurate, *in situ,* calibration of a mass spectrometer for temperature programmed desorption studies", K.E.H. Gilbert, P.A. Parilla, J.L. Blackburn, T. Gennett, A.C. Dillon, and M.J. Heben, manuscript in preparation.
- 11. "Competitive adsorption between carbon dioxide and methane on carbon nanotube materials" K.E.H. Gilbert, P.A. Parilla, J.L. Blackburn, T. Gennett, A.C. Dillon, and M.J. Heben, manuscript in preparation.
- 12. "Reaction intermediates in chemical vapor deposition growth of single-wall nanotubes", L.M. Wagg, J.L. Blackburn, A.C. Dillon, K.M. Jones, P.A. Parilla and M.J. Heben, manuscript in preparation.
- 13. "Formation of nanooctahedra in molybdenum disulfide and molybdenum diselenide using pulsed laser vaporization", P.A. Parilla, A.C. Dillon, B.A. Parkinson, K.M. Jones, J. Alleman, G. Riker, D.S. Ginley & M.J. Heben. *Journal of Physical Chemistry B* 108, 6197-6207 (2004).
- 14. "High-energy, rechargeable Li-ion battery based on carbon nanotube technology", R.S. Morris, B.G. Dixon, T. Gennett, R. Raffaelle & M.J. Heben. *Journal of Power Sources* 138, 277-280 (2004).
- 15. "Development and characterization of single wall carbon nanotube Nafion actuators", B.J. Landi, R.P. Raffaelle, M.J. Heben, J.L. Alleman, W. VanDerveer & T. Gennett. to appear in *Materials Science and Engineering B*.

