



## DOE Hydrogen Program Technology Validation Sub-Program

Sig Gronich John Garbak Office of Hydrogen, Fuel Cells, & Infrastructure Technologies May 25, 2005

Project #: TV1



## Objectives



Validate integrated hydrogen and fuel cell technologies for transportation, infrastructure, and electric generation in a systems context under real-world operating conditions.

- By 2005, \$3.60/gge and 8¢/kWh.
- By 2008, 20,000 hour fuel-cell durability (stationary), 32% efficiency, \$1,500/kW
- By 2009, 250+ mile range, 2000 hour fuel-cell durability (vehicle), \$3.00/gge hydrogen (untaxed)
- By 2011, biomass/wind or geothermal electrolyzerto-hydrogen system to produce hydrogen for \$2.85/gge at the plant gate







#### Task 1 Vehicle Field Evaluations

- Task 2 Hydrogen Infrastructure Power Parks
- Task 3 Natural Gas-to-Hydrogen Refueling Stations
- Task 4 Co-Production of Hydrogen and Electricity
- Task 5 Renewable Hydrogen Production Systems
- Task 6 Technical Analyses



Budget

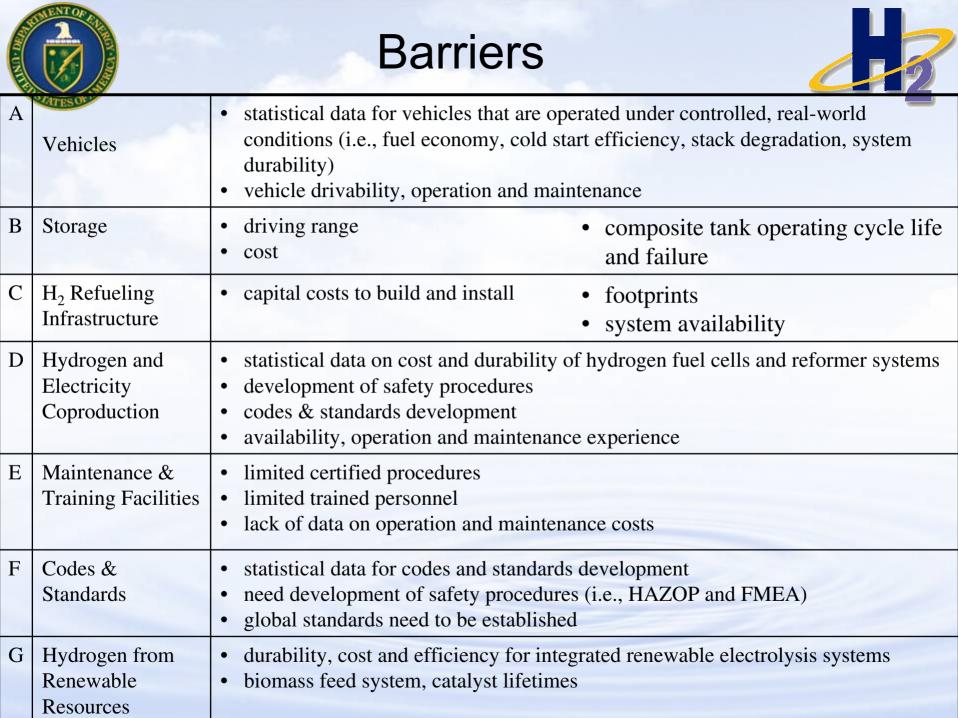


| Task |                                         | DC          | <b>Cost Shares</b> |              |
|------|-----------------------------------------|-------------|--------------------|--------------|
|      |                                         | EW&D        | Interior           |              |
| 1    | Fleet &<br>Infrastructure               | \$6,359,761 | \$16,713,129       | \$21,781,890 |
| 2    | Power Parks                             | \$720,000   |                    | \$720,000    |
| 3    | Natural Gas to H2<br>Refueling Stations | \$1,178,355 |                    | \$878,355    |
| 4    | Energy Station                          | \$350,000   |                    | \$350,000    |
| 5    | Renewable                               | \$0         |                    | \$0          |
| 6    | Analyses                                | \$250,000   | \$351,000          | \$0          |
| 1&4  | Earmarks                                | \$5,059,000 |                    | \$5,059,000  |



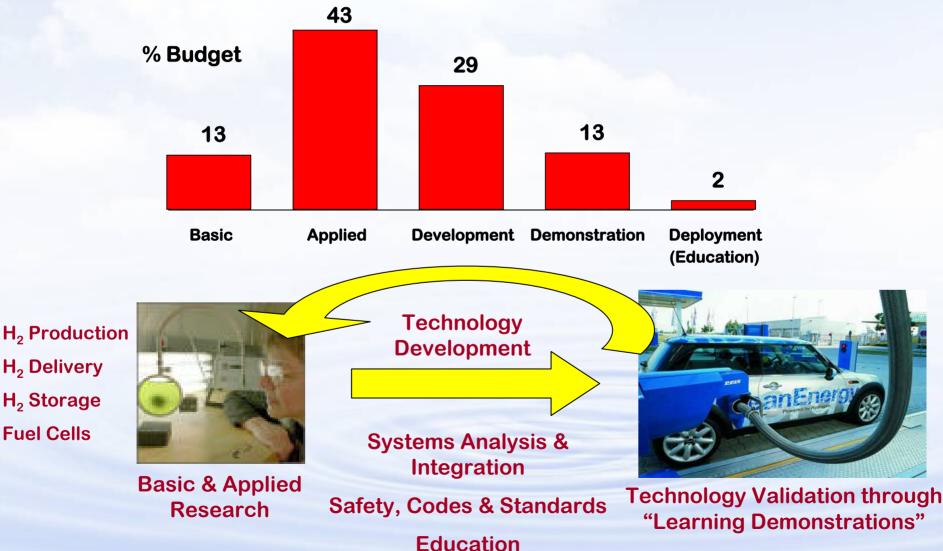
### **Congressionally Directed Projects**




| California                        | \$4,960,000                                  | Tasks     | Develop, build, and test hydrogen infrastructure |
|-----------------------------------|----------------------------------------------|-----------|--------------------------------------------------|
| Infrastructure                    | (2005)                                       | 1 & 4     |                                                  |
| Locomotive fuel cell              | \$300,000                                    | Task      | Develop, build & test                            |
|                                   | (2005)                                       | 1         | underground H2 mine loader                       |
| Bus Evaluation                    | \$99,000                                     | Task      | Analyze zero emissions bus –                     |
|                                   | (2005)                                       | 1         | Santa Clara, CA                                  |
| Univ. of<br>Alabama<br>Birmingham | \$963,372<br>(2003)                          | Task<br>1 | Test stationary and vehicle hydrogen systems     |
| Hawaii Energy<br>Center           | \$992,000<br>(2005)<br>\$2,982,000<br>(2004) | Task<br>2 | Develop fuel cell test center                    |
| Hawaii Power                      | \$490,539                                    | Task      | Build and test power parks                       |
| Park                              | (2004)                                       | 2         |                                                  |



#### Congressionally Directed Projects Continued




| NEXT Energy                     | \$793,096 (2003)                       | Task<br>2 | Build and test refueling station                                           |
|---------------------------------|----------------------------------------|-----------|----------------------------------------------------------------------------|
| Chattanooga                     | \$2,485,250 (2004)                     | Task<br>4 | Develop, build and<br>test solid oxide fuel<br>cell coproduction<br>system |
| Washoe County                   | \$1,962,155 (2004)<br>\$992,000 (2005) | Task<br>5 | Develop, build & test<br>geothermal/<br>electrolyzer refueling<br>station  |
| UNLV                            | \$963,372 (2003)                       | Task<br>5 | Build and test<br>photovoltaic refueling<br>station                        |
| Florida Hydrogen<br>Partnership | \$1,962,155 (2004)                     |           | Hydrogen research<br>and development                                       |





#### FY 2005: Requested DOE Hydrogen Program Budget, by Category (\$227M)





Task 1 – Vehicle Field Evaluation "Learning Demonstration"



#### **Description**

- Support CaFCP vehicle and bus demonstration
- Support Controlled Fleet demonstrations (collect vehicle operating experience from different geographic regions)
- Design, build and test hydrogen locomotive and front-end loader vehicles



#### **CaFCP Bus Demonstration**





Hickam Air Force Base



Santa Clara Valley Transportation Authority

California Fuel Cell Bus Demonstration Sites Pacific Bakersfield Mayle



SunLine Transit Agency



Alameda Contra-Costa Transit Agency

- Completed evaluation of ThunderPower bus at SunLine
- Data collection in progress at Santa Clara VTA and Hickam AFB
- Infrastructure in place for the Alameda Contra-Costa Transit Agency



## Technology Validation Strategy



 Conduct learning demonstrations of hydrogen infrastructure in parallel with hydrogen fuel cell-powered vehicles to enable and assess technology readiness for a 2015 commercialization decision.

#### Major Objectives

- Obtain detailed component data under real-world conditions (climatic, geographic etc.) to re-focus the Department's hydrogen and fuel cell component and materials research
- Validate the technology against time-phased performancebased targets



#### Learning Demonstration Description and Performance Targets



- FY 2004 2009 Project Period
- Government/industry cost shared co-operative agreement
- \$190M Government share subject to the appropriations process
- 2 Generations of vehicles
- Cold climates to be included by 2<sup>nd</sup> generation
- Renewable feedstock for H2 generation included
- Codes, Standards and Education integral to the success of the project
- Stationary facilities that co-produce electricity and hydrogen are included

#### Key Targets

| Performance Measure                                                                        | 2009*      | 2015**     |  |  |
|--------------------------------------------------------------------------------------------|------------|------------|--|--|
| Fuel Cell Stack Durability                                                                 | 2000 hours | 5000 hours |  |  |
| Vehicle Range                                                                              | 250+ miles | 300+ miles |  |  |
| Hydrogen Cost at Station                                                                   | \$3.00/gge | \$1.50/gge |  |  |
| * To verify progress toward 2015 targets<br>** Subsequent projects to validate 2015 target |            |            |  |  |



## **Cooperative Agreements Have Begun**



UTC Fuel Cells

#### Awarded 4 cooperative agreements 1 project in negotiation

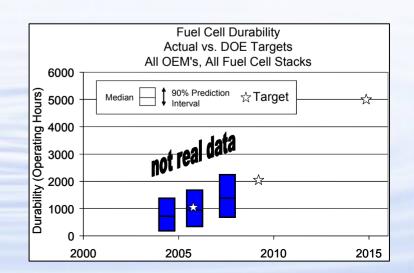
(1) Fuel cells supplied by Ballard

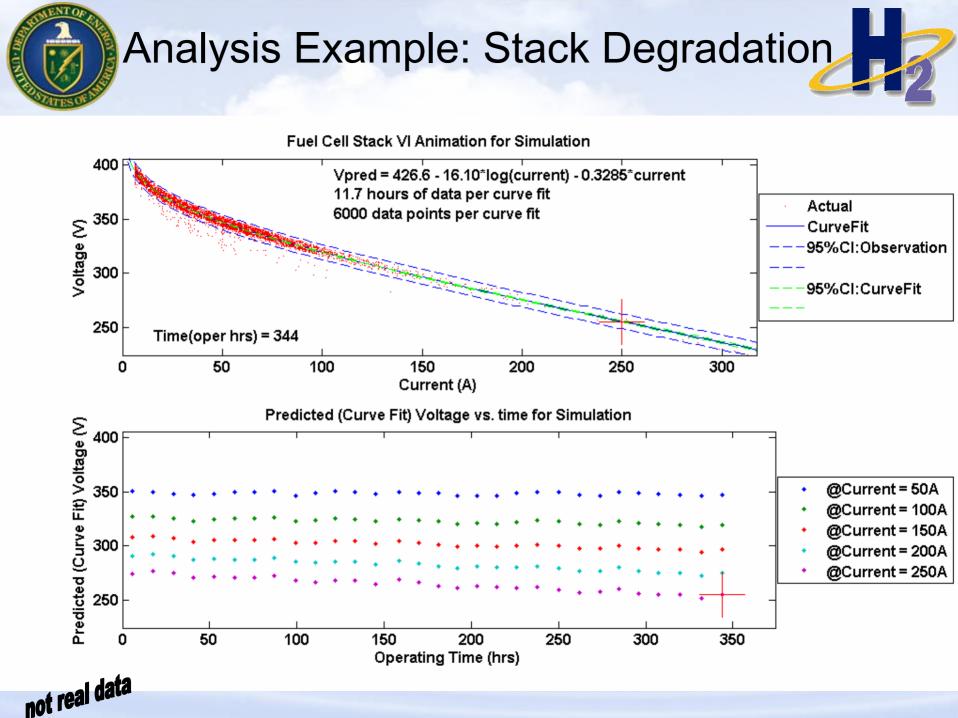


### **Data Collection & Analysis Process**



## Developed Secure Data Center and composite data products


Raw Data, Reports


- @ NREL: Strictly Controlled Access
- Detailed Analyses,
  Data Products, Internal
  Reports
- HSDC ADVISOR



#### Composite Data Products

- Pre-Agreed Upon
  Aggregate Data
  Products
- No Confidential Information







## Hydrogen Vehicles



By 2009, 250+ mile range, 2000 hour fuel cell durability







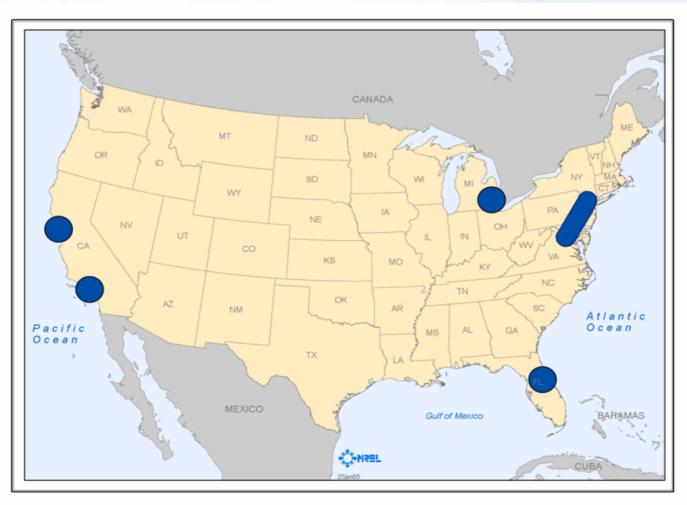
Vehicles have been delivered and data collection has begun



## Hydrogen Refueling Infrastructure



By 2009, <\$3.00/gge hydrogen, untaxed




#### Hydrogen Refueling Stations Opened in California, Michigan and Washington D.C.

## Data Collection



**Diverse Geography Addresses Four Key U.S. Climates** 



#### Cold, Moderate, Hot/Humid, Hot/Arid Climates



#### Hydrogen Locomotive and Front End Loader Vehicles Accomplishments



Accomplishments:

- Completed testing of hydrogen locomotive
- Completed detailed engineering design, review and risk assessment for front end loader
- Completed fabrication and testing of fuel cell power plant for front end loader
- Other subassembly fabrication in progress including metal hydride storage for front end loader



#### Task 2 – Hydrogen Infrastructure Power Parks



By 2008, 20,000 hour fuel-cell durability (stationary), 32% efficiency, \$1500/kW

By 2008, 68% efficiency (electrolyzer stack) and \$600/kW

### **Description**

- Design and construct early refueling facilities on integrated renewable/fossil systems
- Document permitting requirements, lessons learned and safety plans
- Collect and disseminate operating data from different geographic regions



#### Task 2 – Hydrogen Infrastructure **Power Parks**



By 2008, 20,000 hour fuel-cell durability (stationary), 32% efficiency, \$1500/kW



#### **Motor Vehicle Refueling**

| <b>Refueling E</b> | vents     |        |
|--------------------|-----------|--------|
|                    | Hydrogen  | 236    |
|                    | CHyNG     | 717    |
|                    | CNG       | 2,938  |
|                    | Total     | 3,891  |
|                    | Accidents | 0      |
| Fuel Disper        | nsed*     |        |
|                    | Hydrogen  | 259 kg |

259 kg 2,378 gge 14,218 gge



\* Dispensed amounts are from credit card transactions.

CHyNG

CNG

#### Accomplishments:

- Power Park installed and operated that is capable of producing 60 kg/day and 400 kwhr/day. Utilize solar and biomass electrolysis systems. Dispense 5000 psi hydrogen at 99.995% (DTE)
- The hydrogen side of pilot park has a 99.33% availability during 26,000 ۲ calendar hours of operation and 8500 hours of electrolyser operation (APS)
- Fuel cell and ICE gen sets operating produced 9.6 MWH of power (APS) ٠
- Pearson 5 tpd gasifier using bagasse tested (Hawaii) •
- Initiated testing on Ballard and GM fuel cells (Hawaii) •



Task 3 – Natural Gas-to-H<sub>2</sub> Refueling Stations



By 2006, validate \$3.00/gge

#### **Description**

- Build and operate natural gas-to-hydrogen refueling station to collect data on reformer performance and reliability
- Validate the cost of H<sub>2</sub> produced including station operation and maintenance
- Disseminate data from refueling sites to verify component performance



## Task 3 – Natural Gas-to-H<sub>2</sub> Refueling Stations

By 2006, validate \$3.00/gge

Accomplishments:

- Completed Phase 2 subsystem development for all components of an advanced SMR. Final system design efforts and equipment procurement initiated. Liquid hydrogen tank and blend and dispenser systems installed. (APCI)
- Completed subsystem and system designs. Second generation fuel processor built and tested. Developed hydrogen dispenser fill control algorithm. (GTI)
- Completed Phase 2 development of an autothermal cyclic reformer pilot scale reformer and PSA subsystem. Both systems have been operated to finalize Phase 3 system design. (GE)
- Autothermal reformer tested at SunLine to supply hydrogen for demonstration buses in revenue service. (Hydradix)
- Design and component testing completed on isothermal compressor. (APCI)









# Task 4 – Co-Production of H<sub>2</sub> & Electricity



#### By 2005, validate 8¢/kWh and \$3.60/gge

#### **Description**

- Collect data on reformer and fuel cell performance, reliability and cost
- Identify the operation and maintenance requirements for the Energy Station
- Determine the economics for a large coproduction refueling station



# Task 4 – Co-Production of $H_2$ & Electricity



#### By 2005, validate 8¢/kWh and \$3.60/gge

#### Accomplishments:

- Successfully demonstrated 2,000 hour run on hydrogen generator (Las Vegas)
- Installed and initiated operation of commercial fuel cell system (DTE)
- Designed and initiated procurement of second generation hydrogen generator (Penn. State)
- Go decision made to proceed with engineering development and preliminary design of high temperature fuel cell concept (APCI)
- 5 kW solid oxide fuel cell system design completed. Component assembly and testing initiated. (Chattanooga)
- Bus successfully operated on 30%/70% hydrogen/natural gas blend (Las Vegas)





#### Task 5 – Renewable H<sub>2</sub> Production Systems



By 2011, validate \$2.85/gge at the plant gate from biomass/wind or geothermal resource

#### **Description**

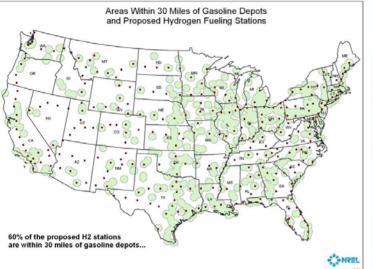
- Validate integrated systems and their ability to deliver hydrogen
- Collect data to verify component performance



#### Task 5 – Renewable H<sub>2</sub> Production Systems



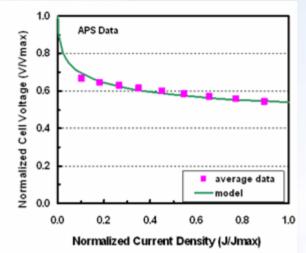
By 2011, validate \$2.85/gge at the plant gate from biomass/wind or geothermal resource




Accomplishments:

- Completed construction and preliminary testing of biomass-to-hydrogen pyrolysis-reformer pilot plant (Clark Atlanta University)
- Identified potential co-products option (University of Georgia)
- Safety and component performance review completed (University of Georgia)
- PV hydrogen station design completed (UNLV)




## Task 6 – Technical Analyses



#### **Description**

- Analyze early infrastructure deployment options
- Analyze advanced Power Parks for production of hydrogen and electricity

Calibration of FC polarization curve to APS data



#### <u>Accomplishments</u>

- Early hydrogen infrastructureanalysis completed forseveral scenarios
- Power Park validation analyses for several stations is completed



## **Future Work**



Task 1Complete testing and analysis of generation1 vehicles and operation and analysis ofinfrastructure

Continue data collection on VTA, Hickam, AC Transit and SunLine buses

Complete front end loader test program

- Task 2 Complete the installation and operation of 3 power park projects
- Task 3 Complete validation of 3 natural gas to hydrogen refueling stations projected to produce hydrogen at less than \$3.00/gge



## Future Work Continued



Task 4 Complete validation of energy station projected to produce hydrogen at less than \$3.60/gge and 8¢/kWh

Continue with high temperature coproduction systems

Task 5Complete 1000 hour durability and performance<br/>tests of biomass pyrolysis system

Complete construction and testing of PV hydrogen refueling station

Task 6Complete analysis of power park systems and<br/>define market applicability

Continue development of early infrastructure scenarios