Novel Compression and Fueling Apparatus to Meet Hydrogen Vehicle Range Requirements

Todd Carlson Future Energy Solutions Air Products and Chemicals, Inc. May 25, 2005

Contributors: David Chalk (Machinery Design) Nick Pugliese (Fabrication) Mark Rice (Controls)

Project ID: TV6

This presentation does not contain any proprietary or confidential information

Overview

- Timeline
 - Project Start 10/2002
 - Contract 5/2004
 - Project End 2/2006
 - 85% Complete

- **Barriers**
 - High cost of hydrogen compression
 - Cost of hydrogen

- Budget
 - Total \$690,875
 - DOE Share \$345,438
 - APCI Share \$345,438
 - 04 Funding \$317,606
 - 05 Funding \$373,088

- Collaboration
 - Tescom
 - Genesys
 - Weh
 - OPW
 - Walther
 - Spir Star

Objectives

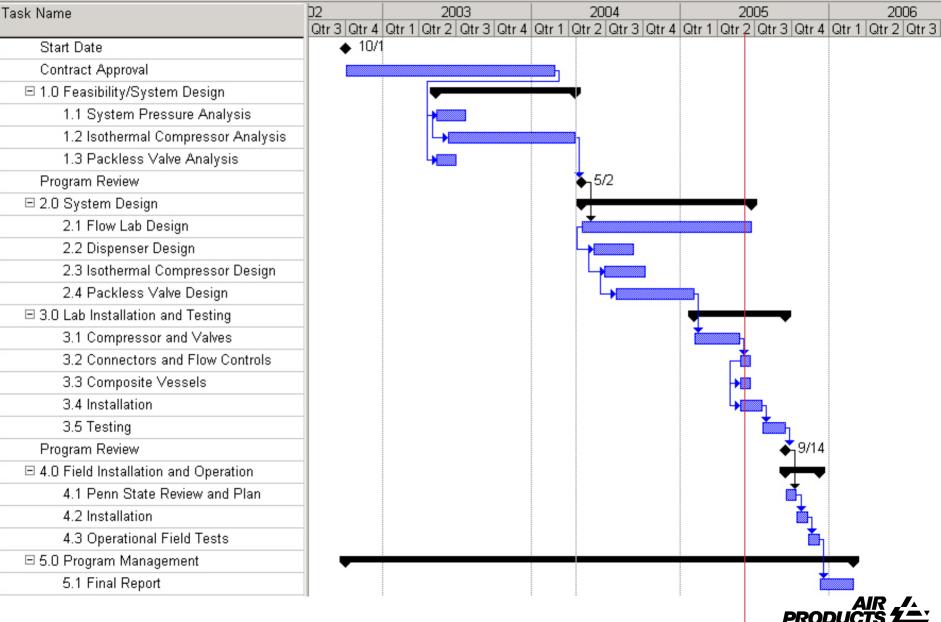
- Primary
 - Develope a process design for a novel compressor
 - Develope mechanical design for novel compressor
 - Select a test hydraulic fluid
 - Machine/Manufacture Compressor parts & components
 - Assemble prototype system and test
 - Demonstrate operation of the system
 - Final report
- Secondary
 - Investigate other fueling components to support 700 barg (10,000 psig) hydrogen fueling

Approach

- Conceptual Design
- Process Design
- Thermodynamic Data
- Fluid Selection and Testing
- Dynamic Modeling
- Component Design, Fabrication, and Testing
 - Machining of compressor parts complete
 - New valves developed for 15,000 psig
 - New relief values being tested and qualified
 - New pressure switch identified
 - New thermocouple wells designed
- Prototype
 - Skid hazard review
 - Components on order for test skid
- Long Term Testing
 - Site selection and funding

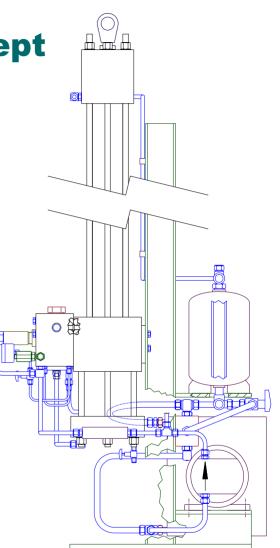
Approach Design Issues

- Compressor
 - Isothermal (~50 Deg F rise)
 - High pressure (~14,000 psig)
 - Single stage
 - Low cost
- Fueling Station
 - Lower the delivered cost of hydrogen
 - Composite vessels (ASME approval)
 - Lined steel vessels are \$110,000/ft3 at 15000 psig
 - Breakaway and fuel nozzle (Walther, OPW, and Weh)
 - Fueling codes



Safety

- Air Products Hydrogen Experience
 - Over 12,000 fills (75-100/week)
 - 10 fuel stations installed last year (32 total, 12 in construction)
 - Industrial hydrogen (30+ years, 55% merchant market share, 1000 gaseous/500 liquid customers, pipelines, purification/separation, reformers, electrolysis)
- Our fueling systems have undergone rigorous third party independent safety reviews
 - ABS Consulting Singapore
 - NASA White Sands, NM
 - KHK/JHPGSL Kagoshima, Japan
 - International Refinery Services Singapore
 - Beijing Government FSR Permitting
 - KGSL Seoul, Korea
 - UL and Metlabs

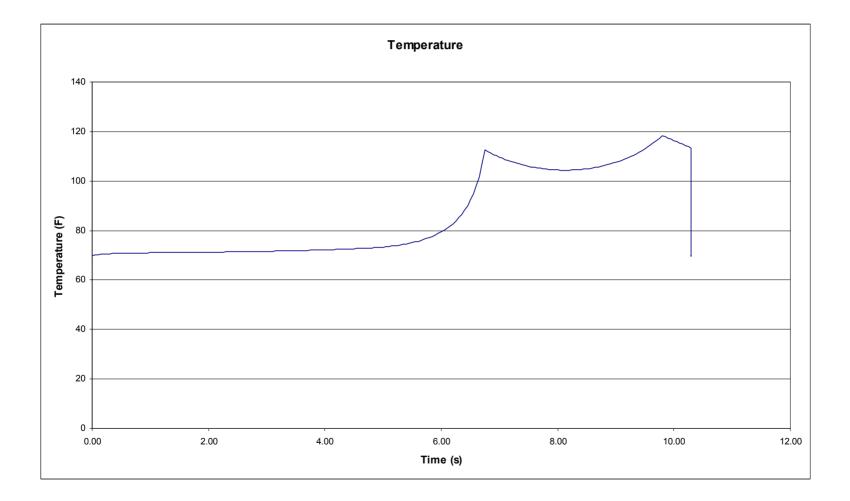


Timeline

Technical Accomplishments Novel Compressor – Basic Concept

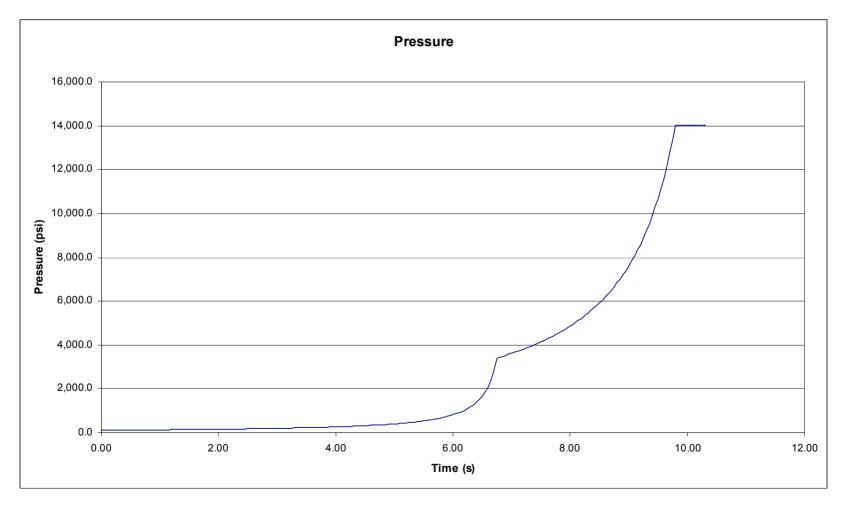
- Isothermal: Gas cooled during compression (50 °F rise)
- Single Stage: Liquid piston permits high pressure ratio by elimination of piston to cylinder clearance and temperature concerns (140:1 compression ratio)
- Liquid Pump: Inherently lubricates all dynamic seals
- Dynamic Gas Seals Eliminated: No gas seals to atmosphere
- Issues: fluid carryover, level control

Patents Pending


many typical machinery issues eliminated by liquid piston

Technical Accomplishments Existing Technology

- Diaphragm Compressor
 - Metal diaphragm separates gas from oil
 - 300 deg F temperature rise
 - 20:1 standard compression ratio
 - Up to 350 barg is bolted, higher pressure requires bootstrap
- Hydraulic Intensifier
 - Floating piston with rings separates gas from oil
 - 300 deg F temperature rise
 - 8:1 standard compression ratio
 - Smaller cylinder allows higher discharge pressures (long stroke at low RPM)


Technical Accomplishments Cylinder Pressure and Temperature

~ 50°F temperature rise for 140:1 compression ratio

Technical Accomplishments Cylinder Pressure and Temperature

Technical Accomplishments Dyanamic Simulation Results

- Identified key operational issues and design parameters:
 - Surface area requirements in heat exchanger and heat transfer coefficients for near isothermal operation
 - Liquid inventory management needs (pressure/flow regulation)
- Quantitative results on potential sources of inefficiency:
 - Hydraulic intensifier friction
 - Circuit DPs
 - Hydrogen solubility in compression fluid
 - Heat transfer limits and design of heat exchanger
- Process sensitivities to the following parameters studied:
 - Initial accumulator gas volume
 - Pump flow
 - Hydraulic intensifier flow
 - Valve flow coefficients

novel H₂ compressor unit is feasible

Technical Accomplishments Pressure Analysis

- Automotive OEM's are pursuing 700 barg fueling to achieve US norm of 300 mile range.
- Fast fill (~ 4-6 minutes) is the method with the highest commercial potential.
- Cascade fueling is the most often used method of achieving a low cost, fast fill. This is not possible at 700 barg with steel storage cylinders due to cost.
- To achieve full fills, cascade filling requires a minimum of 25% overpressure to counter vehicle tank heating.
- Fast fill to 700 barg will require cooling of the hydrogen.
- ASME and Air Products requirements for relief valves (set at vessel MAWP) impose a maximum operating pressure of 90% of MAWP.

(700 Barg * 125%) / 90% = 972 Barg MAWP (14100 psig)

System pressure requirement is 14100 psig MAWP

Technical Accomplishments Fueling Apparatus

- Air Products has developed hydrogen fueling systems up to 700 barg (10,000 psig).
 - Valves
 - Manual
 - Actuated
 - Pressure Control
 - Flexible Hose
 - Tubing
 - Fittings and Adapters
 - Controller
 - Packaging

Most components available today for 700 barg fueling

Responses to Questions

What fluid is used for a the compressor?

- Krytox Fluorocarbon Oil
- Patents are submitted and contract with DOE and DEP are now signed

Future Work

- Assemble and Test.
- Determine overall costs.
- Determine feasibility of future use.
- Long term prototype testing, if warranted.
- Final Report

Interactions/Collaborations

- Air Products and Chemicals, Inc.
 - Future Energy Solutions
 - Advanced Systems Machinery
 - Advanced Controls
 - Dynamic Modeling
 - Corporate Safety
- Tescom
- Spir Star
- Barksdale
- Ashcroft
- Weh
- OPW
- Walther

Thank you

tell me more www.airproducts.com

Publications and Presentations

- May 2003 DOE Peer Review
- May 2004 DOE Peer Review

Hydrogen Safety

The most significant hydrogen hazard associated with this project is:

Drawing air into the compressor suction and compressing into the high pressure hydrogen storage vessels. Given the correct conditions, this could result in a high pressure flammable gas mix. Deflagration or detonation of this mixture could result in failure of the vessels.

Hydrogen Safety

Our approach to deal with this hazard is:

We have completed a Level of Protection Analysis that takes all physical and operating conditions into consideration to determine the probability of the event occurring. We also utilize a low pressure switch on the compressor inlet (hard-wired to PLC power). This pressure switch is functionally tested every quarter.

