

## 2005 DOE Hydrogen Program Review Presentation

#### Hydrogen and Natural Gas Blends: Converting Light and Heavy Duty Vehicles

# Neal Mulligan Collier Technologies, Inc. May 25, 2005

This presentation does not contain any proprietary or confidential information

Project ID # TVP11





# Timeline

- Project start date:
  - July 29,2004
- Project end date:
  - July 29, 2005
- Percent complete 0

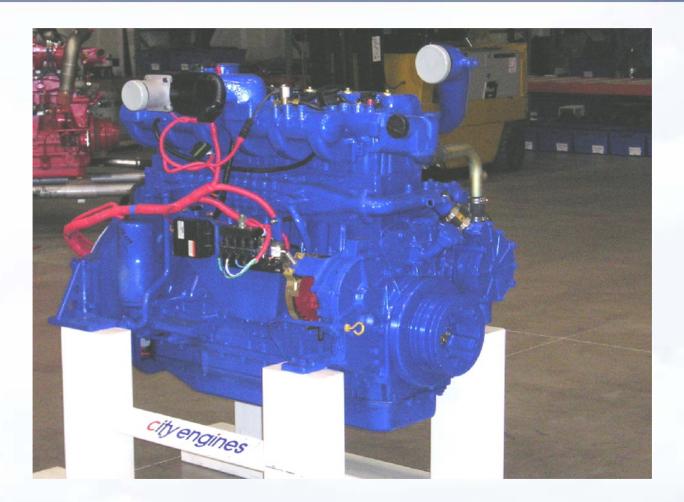
# Budget

- Total project funding
  - DOE share
    - 149,029.00
  - Contractor share
    - 164,484.00

# **Barriers**

- Barriers addressed
  - Light and Heavy Duty Vehicles

## Partners


- City of Las Vegas
- Daewoo Heavy Industries





- Development of a dedicated 30% HCNG engine for the heavy duty engine market
- NOx emissions to meet California's 2007 Urban Bus regulations of 0.2 g/hp-hr
- Utilize existing engine components to achieve equivalent power
- Develop and implement a 30% HCNG kit for light duty vehicles









- 1 Approach
- Utilize empirical emissions and power data from engine testing to determine optimum intake runner sizing and discharge coefficient





- 2 Approach
- Extend the lean limit of combustion using the hydrogen portion of the fuel as the flame enhancer





- 3 Approach
- Utilize existing engine components while maintaining break specific power





- 4 Approach
- Develop low cost engine conversion to utilize 30% HCNG fuel



## **Technical Accomplishments/ Progress/Results**

- Complete new quiescent cylinder head design using the existing valve train components, casting and power and emissions testing
- Achieved 2007 heavy duty emissions of 0.2 g/hphr throughout entire operating range of engine
- All heavy duty engine design goals have been meet or exceeded
- Development phase of low cost light duty vehicle conversion kit



#### Technical Accomplishments/ Progress/Results Heavy Duty Engine

High Swirl Port Modified diesel engine for gaseous fuel



Quiescent Port Designed, Cast, machined And Tested

Engine testing has shown the quiescent port to produce significantly lower NOx emissions than the high swirl port



## **Accomplishments Heavy Duty Engine**

#### Swirl Ratio as a function of BMEP, THC and NOx emissions

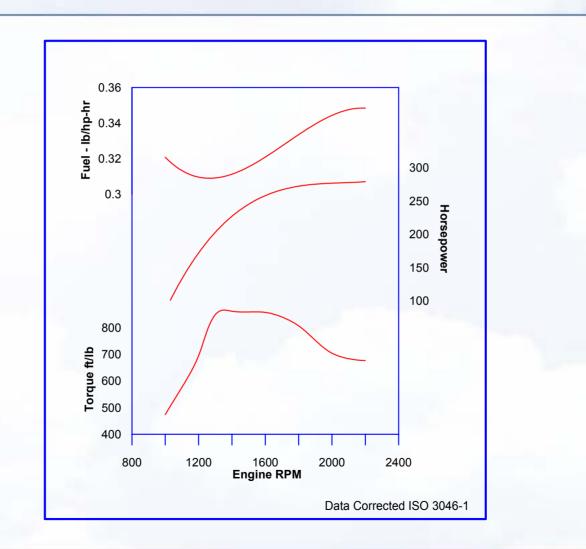
|            | RPM  | Equiv. | BMEP       | THC       | NOx       |
|------------|------|--------|------------|-----------|-----------|
| Head Type  |      | Ratio  | kPa        | (g/kW-hr) | (g/kW-hr) |
| Quiescent  | 1700 | 0.55   | 703        | 1.6       | 0.07      |
| High Swirl | 1700 | 0.55   | 703        | 1.5       | 0.07      |
| Quiescent  | 3000 | 0.55   | 745        | 1.8       | 0.11      |
| High Swirl | 3000 | 0.55   | <b>696</b> | 3.6       | 0.44      |

These data determined the intake port shape needed for our cylinder head \*Swirl is determined by the angular momentum of the incoming air the higher the swirl the turbulence occurs



## **Accomplishments Heavy Duty Engine**

- Fuel system development and previous testing
  - Chart shows the significant effect of emissions on fuel mixing


| System Type | RPM  | Equiv<br>Ratio | BMEP<br>(kPa) | NO <sub>x</sub><br>(g/kW-hr) |
|-------------|------|----------------|---------------|------------------------------|
| Design 1    | 1700 | 0.51           | 696           | 0.08                         |
| Design 2    | 1700 | 0.52           | 710           | 0.07                         |
| Design 1    | 3000 | 0.53           | 723           | 0.11                         |
| Design 2    | 3000 | 0.53           | 696           | 1.23                         |

•Design 1, was a system designed by Collier Technologies, Inc.

•Design 2 was a venturi-based after market natural gas system

# cti

#### **Accomplishments Heavy Duty Engine**



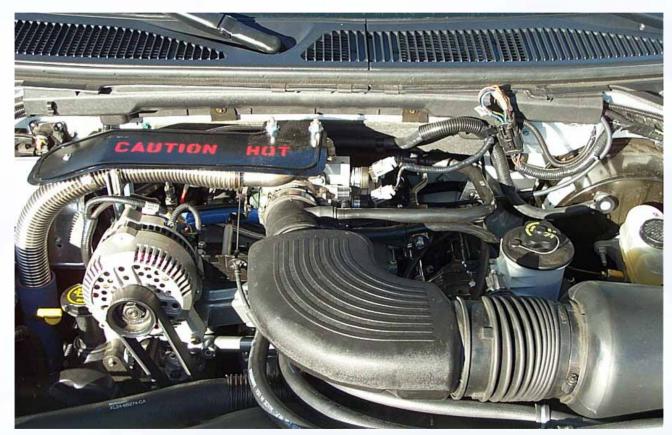


### **Accomplishments Heavy Duty Engine**

## Design Goals and Accomplishments

- Developed a complete Heavy Duty 11 liter engine for operation with 30% HCNG
- Meet or exceed pending emissions regulations
  - Emissions goal 0.2 g/hp-hr NOx
  - Accomplished 0.1 g/hp-hr NOx through entire operating range




Accomplishments Light Duty Vehicle Conversion Kit

- Developed a kit to modify an existing dedicated natural gas vehicle for operation with 30% HCNG
- Beta version in use for 4 years and 60K trouble free miles
- Successful road testing
- Continues to achieved very low emissions in FTP 75 test



## Accomplishments Light Duty Vehicle Conversion Kit

Beta version light duty kit shown below





#### Accomplishments Light Duty Vehicle Conversion Kit Emissions

## <u>CAVTC</u>

#### CLEAN AIR VEHICLE TECHNOLOGY CENTER

#### 1975 Federal City Gasoline Test

| Test <u>622</u>                | 4               | Vehicle                     |                              |                                 | Fuel                         |                                |                      |  |
|--------------------------------|-----------------|-----------------------------|------------------------------|---------------------------------|------------------------------|--------------------------------|----------------------|--|
| Date 10/24/01                  |                 | Control # A01NRG01          |                              |                                 |                              |                                |                      |  |
| Time 10:13                     |                 | Model 2001 ford f           |                              | -150 xlt                        | CWF                          |                                | 3                    |  |
| Cell ID Cell 1                 |                 | VIN 1FTRX17L51N             |                              |                                 | OWF                          | 0.014                          |                      |  |
| Test epa75                     |                 | Engine 1fmxt05.4p           |                              | ofs                             | Spc Grv                      | 0.609                          |                      |  |
| Shift epa75                    |                 | Odometer                    |                              | 738 NH                          |                              | 20530                          |                      |  |
| Driver Gil Rodri               | guez D          | yno Inertia                 | 5,500                        |                                 |                              | 0.60                           |                      |  |
| Operator Glen Mu               |                 |                             | 20.8/18.4                    |                                 | Control #                    | TANK1                          |                      |  |
|                                | ,               |                             |                              |                                 |                              |                                |                      |  |
| Ambient Conditions             |                 |                             |                              | Comment                         | S                            |                                |                      |  |
| Baro (inHg) 30.036             | 30.034          | 30.035                      |                              | 30%hydrog                       | en 70%natu                   | ral gas                        |                      |  |
| Dew Pt (F) 45.72               | 45.69           | 46.13                       |                              |                                 |                              |                                |                      |  |
| Dry Temp (F) 75.49             | 80.71           | 82.79                       |                              |                                 |                              |                                |                      |  |
| Humidity 34.732%               | 29.207%         | 27.764%                     |                              |                                 |                              |                                |                      |  |
| Abs (gr/lb) 45.05              | 45.00           | 45.77                       |                              |                                 |                              |                                |                      |  |
| NOx K Factor 0.877             | 0.877           | 0.880                       |                              |                                 |                              |                                | A-4, 40% fill=5.0    |  |
|                                |                 |                             |                              | EPA fuel e                      | conomy calcu                 | ilation used.                  |                      |  |
| Phase Variables                |                 | _                           |                              |                                 |                              |                                |                      |  |
| Begin                          | End             | Length                      | Viol                         | Dist (mi)                       | Vmix(ft3)                    |                                |                      |  |
| Phase 1 10:13:19               |                 | 509                         | 0                            | 3.598                           | 2850.89                      |                                |                      |  |
| Phase 2 10:21:48               |                 | 870.4                       | 0                            | 3.861                           | 4953.96                      |                                |                      |  |
| Phase 3 10:46:19               | 10:54:46        | 507.7                       | 0                            | 3.590                           | 2888.72                      | J                              |                      |  |
| Bag Readings                   |                 |                             |                              |                                 |                              |                                |                      |  |
| Phase 1                        | HC ppmC         | CO ppm                      | NOX ppm                      | % CO2                           | CH4ppm                       | NMHCppr                        | n                    |  |
| Full Sca                       |                 | 500.00                      | 30.00                        | 2.00                            | 50.00                        |                                | DE                   |  |
| Sample Con                     | c. 32.310       | 87.997                      | 0.521                        | 1.591                           | 26.598                       | 1.908                          | 6.11                 |  |
| Ambient Con                    | c. 9.302        | 0.000                       | 0.072                        | 0.054                           | 6.823                        | 1.503                          |                      |  |
| Net Con                        | c. 24.532       | 87.997                      | 0.461                        | 1.546                           | 20.892                       | 0.652                          |                      |  |
| Gran                           | ns <b>1.142</b> | 8.269                       | 0.062                        | 2283.94                         | 0.973                        | 0.030                          |                      |  |
| Phase 2                        |                 | 01203                       | 01002                        |                                 | 0.270                        | 0.000                          |                      |  |
| Full Sca                       | le 30.00        | 100.00                      | 30.00                        | 2.00                            | 50.00                        |                                | DE                   |  |
| Sample Con                     | c. 9.794        | 5.832                       | 0.084                        | 0.941                           | 7.655                        | 1.045                          | 10.38                |  |
| Ambient Con                    | c. 8.905        | 0.000                       | 0.075                        | 0.053                           | 5.950                        | 1.294                          |                      |  |
| Net Con                        | c. 2.479        | 5.832                       | 0.016                        | 0.894                           | 2.278                        | 0.000                          |                      |  |
| Gran                           | ns <b>0.201</b> | 0.952                       | 0.004                        | 2293.82                         | 0.184                        | 0.000                          |                      |  |
| Phase 3                        |                 | 0.202                       | 0.001                        |                                 | 01101                        | 0.000                          |                      |  |
| Full Sca                       | le 30.00        | 100.00                      | 30.00                        | 2.00                            | 50.00                        |                                | DE                   |  |
| Sample Con                     |                 | 25.300                      | 0.078                        | 1.392                           | 13.454                       | 0.920                          | 7.01                 |  |
| Ambient Con                    |                 | 0.000                       | 0.073                        | 0.054                           | 4.438                        | 1.190                          |                      |  |
| Net Con                        |                 | 25.300                      | 0.016                        | 1.346                           | 9.649                        | 0.000                          |                      |  |
| Gran                           |                 |                             |                              |                                 |                              | 0.000                          |                      |  |
|                                | 18 0.516        | 2.409                       | 0.002                        | 2014.67                         | 0.455                        |                                |                      |  |
|                                |                 | 2.409<br>CO                 | 0.002<br>NOx                 | 2014.67                         | 0.455<br>CH4                 | 0.000<br>NMHC                  | MPG                  |  |
| <u>Test Results</u><br>Grams/n | <u>THC</u>      | 2.409<br><u>CO</u><br>0.789 | 0.002<br><u>NOx</u><br>0.004 | 2014.67<br><u>CO2</u><br>593.47 | 0.455<br><u>CH4</u><br>0.116 | 0.000<br><u>NMHC</u><br>0.0017 | <u>MPG</u><br>11.823 |  |



## Accomplishments Light Duty Vehicle Conversion Kit

- Kit development will utilize the existing OEM components with minimal manufactured parts
  - Kit components identified:
    - Supercharger, Fuel rails, Exhaust Gas Recirculation system(EGR), Condensation trap, Mechanical EGR valve and linkage



# **Future Work**

- Commercial sales of 30% HCNG engine through newly formed OEM City Engines, Inc. in collaboration with Daewoo Heavy Industries.
- The final version of the light duty vehicle kit will be designed and documentation for installation will be compiled



## • SAE Paper # 2005-01-0235

EMISSION RESULTS FROM THE NEW DEVELOPMENT OF A DEDICATED HYDROGEN ENRICHED NATURAL GAS HEAVY DUTY ENGINE



**Hydrogen Safety** 

# The most significant hydrogen hazard associated with this project is:

The most significant hazard associated with this project is the potential fire hazard during refueling operations.



# **Hydrogen Safety**

# Our approach to deal with this hazard is:

This area falls under the guidelines of Air Products and the City of Las Vegas, as they are the operators of the refueling facility