Fuel Cell Powered Underground Mine Loader Vehicle DE-FC36-01GO11095

23 May 2005

This presentation does not include any proprietary or confidential information

Project ID # TVP12 Paoletti

PROJECT TIMELINE

May 2005

- Phase 1--Cost Benefit Analysis and Preliminary Design
- Phase 2--Detailed Engineering Design

•Phase 3--Fabrication, Integration, and Demonstration

Key Milestone: Power-up Fuelcell LHD, June 2005

BUDGET

- Total project funding
 –DoE funding
 –Vehicle Project funding
 \$ 2,412,527
 - •Funding received FY04 \$ 1,428,817

•Funding for FY05 \$ 651,275

BARRIERS

- The Hydrogen, Fuel Cells, and Infrastructure Technologies Multi-year Program
 Plan technical barriers this project addresses include:
 - -Vehicles
 - -Storage

PARTICIPANTS

- •AeroVironment Inc., Monrovia, CA
 - –Fuel Cell Balance of Plant, Battery Pack, DC/DC Converters, Power Module Mechanical Design, and Monitoring and Control
- •Caterpillar Inc., Peoria, IL
 - -Drive Train, Hydraulics, Vehicle Selection, Modification, and Integration
- •HERA, Longueuil, QC –Metal-Hydride Storage
- •Nuvera Fuel Cells, Milan, IT & Cambridge, MA –Fuelcell Manufacturer

PARTICIPANTS, continued

- •Modine Manufacturing Company, Racine, WI –Heating and Cooling
- •Hatch, Sudbury, ON –Risk Assessment and Regulatory Review
- •CANMET-MMSL, Val d'Or, QC —Demonstration Oversight, Cost-Benefit Reports
- •Washington Safety Mgt Solutions, Aiken, SC –Hydrogen Risk Assessment
- •DRS Technologies, Hudson, MA –Traction Motor

PARTICIPANTS, continued

- •Southwest Research Institute,San Antonio,TX –Duty Cycle and Energy Modeling
- •University of Nevada, Reno, NV –Ventilation Evaluation
- •Placer Dome Ltd., Vancouver, BC –End-user Oversight and Mine Demonstration
- •Newmont Mining Corporation, Carlin, NV –End-user Oversight and Mine Demonstration
- •MSHA, Triadelphia, WV –Regulatory Oversight

PARTICIPANTS, continued

- •Agnico-Eagle Mines Ltd., LaRonde Mine, QC –Mine Demonstration
- •Fuelcell Propulsion Institute, Denver, CO –Project Advocacy and Dissemination
- •Vehicle Projects LLC, Denver, CO –Project Management

PROJECT OBJECTIVES

To assist the DoE in the expansion of fuelcell systems technology through development and evaluation of a fuelcell mine loader vehicle for an application with high commercial potential.

- Develop and demonstrate an underground fuelcell powered mine loader.
- Develop associated metal-hydride storage and refueling system.
- •Demonstrate loader in an underground mine in Nevada.

APPROACH

- Perform cost/benefit analysis of fuelcell mine vehicles, including cost of pro-ducing hydrogen, method of hydrogen transfer, mine recurring costs, and ventilation savings
- Determine power (duty cycle) and drive system requirements, and onboard energy storage for a Caterpillar-Elphin-stone R1300, 165 hp (123 kW), 3.5 cu. yd. mine loader
- Perform detailed engineering design of power plant, metal-hydride storage, drive system, and control system

APPROACH, continued

- •Fabricate power plant and metal-hydride storage and bench test
- Integrate power plant, metal-hydride storage, and system components into base vehicle
- •Complete risk assessment and certify for underground demonstration
- •Test entire vehicle and demonstrate in an underground mine in Nevada

TECHNICAL ACCOMPLISHMENTS, PROGRESS, and RESULTS

- •Power plant bread board testing successful
- Power electronics tested successfully
- •Battery pack packaged into module
- •Power plant testing to be completed by 30 May 2005
- •Metal hydride storage capacity 13.2 kilograms of hydrogen

POWER MODULE

Power Plant Accomplishments

- •112 NiMH batteries (12 kWh) liquid cooled
- Data AcQuisition (DAQ) monitors all 402 cells
- •Stacks full-load 90 kW (gross)

POWER MODULE, continued

Power Plant Accomplishments, continued

- •Power plant full-load 160 kW (gross)
- •Hydrogen pressure 2.0 bara
- •Air pressure 1.8 bara
- •Operating temperature between 60°-75°C
- •Parasitic power losses < 18%

FUELCELL POWERPLANT

Traction Motor Layout

AeroVironment--Electronics and Layout Nuvera Fuel Cells--Stacks

Copyright © 2004 by Vehicle Projects LLC

FUELCELL/DIESEL

Power plant comparison

	Conventional Diesel	Hybrid Fuelcell
Power continuous net	123 kW	70 kW
	(165 hp)	(94 hp)
Power peak net	123 kW	140 kW <10 mins.
	(165 hp)	(188 hp)
Endurance	8 hr	6 hr
Vehicle mass empty	19750 kg	22700 kg
	(43,450 lbs)	(49,940) lb
Fuel capacity	295 L diesel	142560 L hydrogen
	(78 US gal)	(13.2 kg)
Regenerative braking	no	yes
Hydraulic power source	integrated with engine	separate 100 kW peak motor

VEHICLE LAYOUT–CATERPILLAR

DUTY CYCLE

Loader Power Requirements

VEHICLE LAYOUT–CATERPILLAR

Copyright © 2004 by Vehicle Projects LLC

TORQUE-SPEED COMPARISON

Torque-speed comparison

TRACTION MOTOR

- Brushless Permanent Magnet
- Rated Power-336 kW (450 hp)
- Efficiency @ Rated Power-95%
- Maximum Current-425 A rms
- Rated Voltage-800 V peak
- Diameter-648 mm (25.5 inches)
- Length–224 mm (8.8 inches)
- Weight–195 kg (395 lbs)
- Cooling–Liquid (water/glycol)

DRS Technologies

METAL HYDRIDE TRANSPORT

Refueling and Transport Container

RESPONSES TO PREVIOUS YEAR'S REVIEWER COMMENTS

- Bench testing could address issues relative to the cost of mine vehicles
 - -Bench testing incorporating powerplant preinstallation and three months testing prior to commencing mine demonstrations
- •Other considered applications
 - -Fuel cell powered industrial applications
 - –Industrial vehicle applications--in- and outside mining industry
 - -Construction vehicles
 - -Heavy equipment applications

FUTURE WORK

- •Remainder of FY05
 - -Fueling of metal-hydride storage tanks.
 - -Power plant acceptance testing.
 - –Integrate associated fuelcell-power components into R1300 base vehicle.
 - -Completed fuelcell loader testing at Caterpillar.

•FY06

-Evaluate performance and durability at an underground mine in Nevada and Ontario.

HYDROGEN SAFETY

The most significant hydrogen hazard associated with this project is release of hydrogen caused by a compromise of the metal hydride bed.

HYDROGEN SAFETY

- •Our approaches to deal with this hazard are:
 - Release of hydrogen will be diluted due to established minimum airflow within the mines.
 - Designed in capability to shut down the loader systems upon release of hydrogen.