Power Parks System Simulation

A. E. Lutz, C. J. Mas, J. O. Keller Combustion Research Facility Sandia National Laboratories Livermore, CA

TV-P-4

Hydrogen Program Annual Review May 23, 2005

This presentation does not contain any proprietary or confidential information.

Overview

Timeline

- Started FY03
- Finish: end of FY06
- Percent complete: 65%

Budget

- FY 2005: 250 K\$
- FY 2006: 250 K\$

Barriers addressed

- Overall performance for stationary H₂ systems
- MYPP defined cost and efficiency targets for distributed H₂ production
- Natural gas:
 - 3 \$/kg (2005) and 1.50 \$/kg (2010) with 4 \$/GJ gas and 0.07 \$/kWh
 - Reforming efficiency:
 - 69 % (2005), 80 % (2010)
- Electrolysis:
 - 4.75 \$/kg (2005) and 2.85 \$/kg (2010) from electricity at 0.04 \$/kWh
 - Efficiency: (electrolyzer + BOP)
 - 68 % (2005), 76 % (2010)

Overview (con't)

- Partners
 - Arizona Public Service (APS)
 - Ray Hobbs
 - Scott McCamman, Dimitri Hochard (ETEC)
 - City of Las Vegas Transit
 - Mark Wait (Air Products)
 - DTE Energy
 - Rob Regan, Bruce Whitney
 - Rob Fletcher (Lawrence Technological University)
 - Energy Resources Group, UC Berkeley
 - Carl Mas, Tim Lipman
 - Hawaii Natural Energy Institute (HNEI)
 - Mitch Ewan, Richard Rocheleau, Severine Busquet

HAWAII NATURAL ENERGY INSTITUTE

Objectives and Relevance to H₂ Program

Objectives

- Develop a flexible system model to simulate distributed power generation in energy systems that use H₂ as an energy carrier
 - Power parks combine power generation co-located with a business, an industrial energy user, or a domestic village
- Analyze the performance of demonstration systems to examine the thermal efficiency and cost of both H₂ and power production

Relevance to the Multi-year Program Plan:

- Technical Analyses
 - Analyze H₂ and electricity as energy carriers and evaluate synergies
 - Analyze advanced power parks for production of both H₂ and electricity
 - Determine the economics of H₂ and electricity co-production compared to stand-alone hydrogen facilities

Approach

Combine engineering and economic analysis

- Assemble engineering model as system of components
- Component models based on fundamental physics and chemistry
 - Coupled to Chemkin software for thermodynamic properties and equilibrium solutions
- Economic analysis modules linked to components
- Validate simulations to data from DOE demonstration projects
 - Conduct site visits to establish working relationships with engineers

Software Design

- Create a library of Simulink modules for H₂-specific components
- Library components can be quickly re-configured for new systems
- Generic components can be customized using specific data
- Initiating GUI development using Sandia internal funds

Library of Simulink modules

- Reformers
 - Steam methane T determined by internal energy balance & chemical equilibrium
 - Autothermal (partial oxidation) optimize air/carbon ratio to balance energy

Electrolyzer

- Energy & mass balances including water phase change and H₂ purification
- Simulates performance vs stack operating conditions and physical characteristics

PEM Fuel cell

- Steady-state model uses first principles & experimental data for polarization curve
- Energy & mass balances for anode/cathode flows, including water phase change

Economic analysis modules are consistent with H2A

- Levelized cost approach that follows H2A spreadsheet analysis
- Defaults to H2A parameters for interest, taxes, depreciation, capacity factor, etc
- Examples of other components:
 - Compressor multi-stage with intercooling, isentropic efficiency
 - High-pressure storage vessel real-gas equation-of-state
 - Photovoltaic solar collector

Simulations of DOE demonstration systems

- Hawaii Natural Energy Institute
 - Stuart electrolyzer provides compressed H₂ for storage
 - 5 kW PEMFC evaluated in FC testing center
- Arizona Public Service (APS) refueling facility
 - H₂ produced by PEM electrolyzer from grid and PV electricity
 - H₂ stored at low-p and used by PEMFC and ICE gen-sets
 - H₂ compressed for vehicle refueling
- City of Las Vegas (CLV) refueling facility
 - Steam-methane reformer (SMR) supports vehicle refueling
- DTE Energy Hydrogen Technology Park
 - PV arrays, Stuart electrolyzer feed PEMFCs (10 at 5 kW each) and vehicle refueling station

Engineering/economic analysis of HNEI power park

- Alkaline electrolyzer generates H₂ that is compressed and stored on-site
 - Output: ~12 kg/day at 53 % efficiency (LHV)
 - Compressor modeled as 70% efficient
- PEM FC generates DC current
 - Fuel cell peak output: 5 kW at 44 % efficiency (LHV) – APS Data for similar unit

- Economic analysis uses H2A parameters
- Parameter Studies:
 - Electrolyzer capital cost
 - Electricity price
 - DOE Goal: 0.04 \$/kWh
 - Honolulu: 0.15 \$/kWh
 - Big Island: 0.22 \$/kWh
- Includes O&M = 2% Capital

Projected cost of H₂ for HNEI power park

- H₂ production rate has non-linear effect on cost
- Use literature correlation to simultaneously vary electrolyzer capital cost and production rate

Electricity price set to 0.04 \$/kWh

- To meet DOE electrolysis targets
 - 2005: 4.75 \$/kg achievable for 1500 kg/day electrolyzer
 - 2010: 2.85 \$/kg will need innovation

Calibration of electrolyzer polarization curve

- Model requires V-I curve as input to electrolyzer
 - Determines component efficiency versus load
- Adjust polarization curve to fit data provided by HNEI
 - Operated Stuart electrolyzer in steady-state at 5 loads
 - Normalized data for use in generalized model

Model of electrolyzer at HNEI power park

Normalized System Output

Model of alkaline electrolyzer efficiency

- Based on hydrogen production and grid electricity input
- System includes electrolyzer stack, balance of plant, AC-DC converter, and compressor
- H₂ produced at 140 atm
- Turn-down 2:1
- Normalized results for use in generalized model

Projected cost of electricity for HNEI power park

- Capital cost for 5 kW-DC fuel cell system
 - Parameter Study:
 - Fuel cell capital cost
 - Vary O&M from 10-30%
 - Economic analysis uses
 H2A Parameters
 - H₂ at 4.86 \$/kg from electrolyzer at nominal conditions:
 - 1500 kg/day production rate
 - 0.04 \$/kWhr electricity

Cost-of-electricity vs Fuel Cell Load

- Based on APS data
- COE as a function of fuel cell load for a 5 kW fuel cell
- COE depends on fuel consumption
 - H₂ is expensive (4.86 \$/kg)
 - Least expensive operation occurs at half-load because of increased efficiency
 - Minimum: 0.43 \$/kWh @ 2.6 kW
 - At full load: 0.45 \$/kWh

Calibration of FC polarization curve to APS data

- Model requires V-I curve as input to fuel cell
 - Determines component efficiency versus load
- Adjust polarization curve to fit data provided by APS
 - Operated Plug Power FC in steady-state at 9 loads
 - Normalized data for use in generalized model

Model of fuel cell system at APS power park

- Model of hydrogen fuel cell system efficiency (LHV)
 - Based on net DC power out and hydrogen flow
 - Power regulated to 48V
 - Data for turn-down to 10:1
 - Normalized results for use in generalized model
 - System includes fuel cell stack, balance of plant, and DC-DC converter

Electrolyzer system efficiencies at APS

- APS data provides average electrical work per unit H₂ produced
 - Broken out by component in the system
- MYPP groups cell stack and balance-of-plant in electrolyzer efficiency
- Compressor grouped with storage and dispensing
 - Second group factor is relative to overall system
- Apply running totals to work and efficiency

Component	Electrical use (kWh/kg)	Running Total (kWh/kg)	Running Efficiency (LHV)		$\eta = \frac{LHV}{\sum W}$			
Electrolyzer *	81.0	81.0	41.2%			i	r	
Chiller	10.3	91.2	36.5%			APS	2005	2010
Control Room	0.4	91.6	36.4%	\		Data	Target	Target
Dryer	0.6	92.3	36.1%	1	Cell & BOP	35%	68	76
N2 System	2.1	94.3	35.3%		Comp, Store, Disp	96%	95	99
Instrument Air	1.8	96.2	34.7%		Total	34%	64	75
Compressor	2.4	98.5	33.8%	\mathbf{V}		-	-	/

T TTTZ

Thermodynamic efficiency for compression

Work required for compression

- Assume ideal intercooling of calorically perfect gas between stages $\frac{\dot{W_{\text{ideal}}}}{\dot{m}} = \frac{RT_1}{\eta} \frac{n\gamma}{\gamma - 1} \left[\left(\frac{p_2}{p_1} \right)^{(\gamma - 1)/n\gamma} - 1 \right]$
- "Task" efficiency for compression work: $\eta = \frac{\eta}{W}$
- Compressor efficiency for APS data
 - 2-stage compressor to 6000 psi
 - Average task efficiency = 70%
 - This efficiency is NOT comparable to MYPP target
 - MYPP defines an efficiency factor that is system dependent

Projected cost-of-H₂ from electrolysis at **APS scaled to MYPP target size facility**

• PEM electrolyzer

- Operates at 35% overall efficiency
- Capital scaled by \$43k x (rate^0.6)
 - Includes storage, BOP costs
- O&M is 2% of capital
 - Not including any stack replacement

Compressor

- 2-stage operating at 70% efficiency
- Capital scaled by \$11k x (rate^0.6)

Compare to MYPP:	Targets	Projected
Electrolyzer capital	0.80 \$/kg	1.13 \$/kg
Compression	0.77	0.43
Electricity	2.47	3.78
O&M	0.71	0.16
Total	4.75 \$/kg	5.50 \$/kg

- Electrical cost is above target due to low η
- At target η = 68 %
 - Electricity = 1.96 \$/kg
 - Total cost = 3.70 \$/kg

Engineering/economic analysis of hybrid power system at CLV

- H₂ Generator (SMR) to feed FC and refueling
 - Reformer: ~150 kg/day at 68% thermal efficiency (H₂/CH₄ on LHV basis)
- Simultaneously vary reformer capital cost & size using a correlation fit to literature data: Capital = \$15k * Rate^{0.76}
- Economic parameters from H2A
- H₂ cost includes compression & dispensing (0.8\$/kg from MYPP)

Dynamic modeling of DTE Energy H₂ Tech park

- Park contains 25 kW photovoltaic capacity
 - Daily and seasonal variation in solar electricity
- Electrolyzer at full capacity (~3 kg/hr) draws ~ 200 kW
 - Capacity operation requires grid power at peak solar incidence
 - Off-peak operation uses inexpensive electricity (5-6 ¢/kWh)
- H₂ storage in high-pressure tube bank
- Vehicle refueling station
- 10 PEMFCs (5 kW each) provide peak-demand power
- Examine the cost-of-H₂ generated at off-peak hours and cost-of-electricity supplied peak-demand

Response to FY 2004 review

- Reviewers' major comments focused on communication of results and utility of the simulations
 - "Would encourage expansion of communication effort."
 - "Would like to see expanded effort to add database/systems analysis."
 - *"Unclear on potential impact of simulation."*
- Sandia response:
 - Committed additional internal funds (40k\$) to develop GUI so others can perform system simulations.
 - Developed closer working relationships with power park personnel
 - Conducted site visits to HNEI, APS, DTE to exchange data and simulation results

Future Work

Compare model to data from DOE power parks (140k\$)

- Arizona Public Service
 - APS has ~1 year of data on H_2 production, few months on PEMFC
 - Apply model to continued data on electrolyzer and PEMFC
 - Apply new model to engine gen-set data
- DTE Energy
 - Newly commissioned park has only a couple months data
 - Apply preliminary model to next year's data and refine analysis
 - Collaborate with Lawrence Tech by hosting summer student
- HNEI
 - Complete initial data comparison to electrolyzer performance
 - Compare PEMFC model to new operation data
 - Collaborate with HNEI study of renewable resources on Hawaii
 - Follow-up activities at Las Vegas and SunLine Transit

Future Work (con't)

Develop user-friendly GUI for sample power parks

- "Advisor-like" interface
- Sandia internal funding (40k\$)
- Continue to build the component library (30k\$)
 - Wind turbine generator in collaboration with Prof. Fletcher at Lawrence Technological University and DTE Energy
 - H₂-ICE gen-set for APS data comparison
- Long-term studies of distributed H₂ production (30k\$)
 - Expand existing analysis to examine thermodynamic availability
- Perform analysis of international H₂ stations (50k\$)
 - Support IEA Task 18: Evaluation of integrated demonstration systems (Susan Schoenung, Longitude 122 West Inc.)

Supplemental Slides

Publications and Presentations

Presentations:

 "Sandia Hydrogen Modeling Capabilities", DOE Systems Analysis Workshop, July (2004).

Publications:

- Lutz, A E, Bradshaw, R W, Bromberg, L and Rabinovich, A, "Thermodynamic Analysis of Hydrogen Production by Partial Oxidation Reforming," *Int J of Hyd Engy*, 29 (2004) 809-816.
- Lutz, A E, Bradshaw, R W, Keller, J O, and Witmer, D E, "Thermodynamic Analysis of Hydrogen Production by Steam Reforming," *Int J of Hyd Engy*, 28 (2003) 159-167.
- Lutz, A E, Larson, R S, and Keller, J O, "Thermodynamic Comparison of Fuel Cells to the Carnot Cycle," *Int J of Hyd Engy*, 27 (2002) 1103-1111.

Safety

- The most significant hydrogen hazard associated with this project is:
 - This project consists entirely of computer simulations of hydrogen systems. The safety issues reside with our collaborative partners who are building and demonstrating the equipment to generate and store hydrogen.
- Our approach to deal with this hazard is:
 - We cooperate with our collaborative partners when we visit their facilities to ensure that we follow the established safety operating procedures.

