

ENERGY

Fuel Cell R&D Valri Lightner, Fuel Cell Team Leader

Jesse Adams (GO) Kathi Epping John Garbak Nancy Garland Jill Gruber (GO) Donna Ho Amy Manheim Jason Marcinkoski David Peterson (GO) Reginald Tyler (GO)

2006 DOE Hydrogen Program Merit Review and Peer Evaluation Meeting

May 16, 2006

Challenges

Durability

Cost

- Electrode Performance
- Water Transport Within the Stack
 - Thermal, Air and Water Management
- Start-up Time and Energy

Cost and durability present two of the more significant technical barriers to the achievement of clean, reliable, cost-effective systems.

Key Targets

Integrated Transportation Fuel Cell Power System (80 kW_e) Operating on Direct Hydrogen

- \$45/kW by 2010
- \$30/kW by 2015
- 5,000 hours durability by 2010 (80°C)

Other Key Targets

Distributed Energy (PEMFC)

- \$750/kW by 2011
- 40,000 hours durability by 2011
- 40% electrical efficiency

Auxiliary Power Units (SOFC)

- Specific power of 100 W/kg by 2010
- Power density of 100 W/L by 2010

Consumer Electronics (DMFC)

Energy density of 1,000 W-h/L by 2010

Transportation Fuel Cell System Targets & Progress

Characteristic		2003 Status	2005 Status	2015 Target
Cost	\$/kW	200	110	30
Precious metal loading	g/kW (rated)	<2.0	1.1	0.2
Power density	W/L	440	525	650
Lifetime (durability w/ cycling)	hr	N/A	~1,000	5,000
Start-up time to 50% of rated				
-20°C ambient temp	sec	120	20	30
+20°C ambient temp	sec	60	<10	5
Start-up and shut down				
energy at: -20°C ambient temp	MJ	na	7.5	5
+20°C ambient temp	MJ	na	na	1

Targets & Progress: Reduced Cost and Increased Durability

Fuel Cell System (80 kW) Costs Status vs. Targets

Fuel Cell Stack (only) Durability Status vs. Targets

- Primary focus is on fuel cells for transportation applications
- R&D is focused on components rather than systems

Analysis, Characterization and Benchmarking

> Solicitation and Lab Call for \$100 million over 2-4 years: closed April 7; selections expected in the fall

Strategy

Secondary focus is on stationary and other early market fuel cells to establish the manufacturing base

Distributed Power

- Improve system durability
- Improve stack performance w/ reformate
- Improve fuel processor performance
- Increase system electrical efficiency

<u>APUs</u>

- Develop diesel fuel processor
- Develop FC that operates on reformate
- Design, build, & test under real-world conditions

Portable Power

- Develop membranes to reduce methanol crossover
- Design, build, & test under real-world conditions

Fuel Cell Budget

□ Transportation Systems □ Distributed Energy Systems □ Stack Component □ Fuel Processor ■ Tech Support

Results: R&D Highlights

Catalysts (Pt Alloy)

- Achieved state-of-the-art Pt-alloy mass activities (0.26A/mg_{Pt}) in durable whisker electrode structure (3M)
- Improved MEA lifetime under harsh FC conditions (3M)
- Achieved mass activity 4x that of Pt (BNL)

MEA testing at LANL

Catalysts (Non-Pt)

- 10X increase in catalyst layer while maintaining mass transport *(LANL)*
- Metal-free carbon based catalyst with activity approaching other non-pt metal catalysts (USC)
- Reduced H₂O₂ generation by more than 70% (USC)

Air-electrode behavior of equal loadings of Pt & non-Pt (cobalt-based) catalysts, **LANL**

Results: R&D Highlights

Characterization

- Achieved real-time imaging of water in FC components during transients (NIST)
- Developed microstructural characterization of PEM FC MEAs (ORNL)

NIST's New BT-2 Neutron Imaging Facility

TEM image showing the distribution of Pt catalyst (ORNL)

Water Management Freeze (sub-freeze)

Results: R&D Highlights

Recycling

- Developed first operating FC with remanufactured membrane/down-select of Pt separation procedures *(Ion Power, Engelhard)*
- Developed testing procedures determining catalyst separation of used MEAs from polymers for use in new MEAs *(lon Power)*
- Developed more conventional Pt-recycling approach (Engelhard)

Membrane Durability

 Identified chemical and mechanical modes of degradation and demonstrated a coupling between the two modes (DuPont/UTC)

Lifetime Improvements Achieved through Coordinated work from Fundamentals to Stack, **DuPont**

For More Information

DOE Fuel Cell Team

Valri Lightner, Team Leader Overall Fuel Cell Systems/ FreedomCAR Tech Team/IPHE 202-586-0937 Valri.Lightner@ee.doe.gov

> Jesse Adams Fuel Cells 303-275-4954 jesse.adams@go.doe.gov

Kathi Epping Stationary & Back-Up/Fuel Processing 202-586-7425 Kathi.Epping@ee.doe.gov

John Garbak Vehicle Demo/APU's/Compressors 202-586-1723 John.Garbak@ee.doe.gov

Nancy Garland National Lab R&D/ HT Membrane/IEA ExCo 202-586-5673 Nancy.Garland@ee.doe.gov Jill Gruber Fuel Cells 303-275-4961 jill.gruber@go.doe.gov

Donna Ho BOP/Cost Analyses/ Portable Power/Catalysts/Bipolar Plates/SBIR 202-586-8000 Donna.Ho@ee.doe.gov

> Amy Manheim Membranes/MEAs 202-586-1507 <u>Amy.Manheim@ee.doe.gov</u>

David Peterson Fuel Cells 303-275-4956 david.peterson@go.doe.gov

Reginald Tyler Fuel Cells 303-275-4929 reginald.tyler@go.doe.gov

www.eere.energy.gov/hydrogenandfuelcells