Т

APPENDIX B: FY 2006 MERIT REVIEW AND PEER EVALUATION MEETING: PROJECTS NOT REVIEWED

	Title	Name	Organization
ANP-1	H2A New Developments	Margaret Mann	NREL
ANP-2	Impact of Renewables on Hydrogen Transition Analysis	Stephen Lasher	TIAX
	Hydrogen Systems Analysis: Validation of "idealized city" models for H2 delivery in	Joan Ogden	
ANP-3	urban areas, with real-city data Chemical Hydrogen Storage in Ionic Liquid	Larry	UC Davis
BES/ST-1	Media Control of Hydrogen Release and Uptake	Sneddon Tom Autrey	U. of Pennsylvania
BES/ST-2	in Condensed Phases From fundamental understanding to	Jack Fischer	PNNL
BES/ST-3	predicting new nanomaterials for high capacity hydrogen storage and fuel cell technologies		U. of Pennsylvania
BES/ST-4	Metal-Organic Frameworks for Highly Selective Separations	Omar Yaghi	UCLA
BES/ST-5	Addressing Grand Challenges Through Advanced Materials	Millie Dresselhaus	MIT
BES/ST-6	Atomistic Transport Mechanisms in Revisible Complex Metal Hydrides	Peter Sutter	BNL
BES/ST-7	In-Situ Neutron Diffraction Studies of Novel Hydrogen Storage Materials	William Yelon	U. Missouri
BES/ST-8	In-Situ NMR Studies of Hydrogen Storage Systems	Mark Conradi	WUSTL
BES/ST-9	High Throughput Screening of Nanostructured Hydrogen Storage Materials	Gang Chen	MIT
BES/ST-10	Complex Hydrides A New Frontier for Future Energy Applications	Vitalij Pecharsky	Ames
BES/ST-11	Molecular Hydrogen Storage in Novel Binary Clathrate Hydrates at Near-Ambient Temperatures and Pressures	Dendy Sloan	Colorado School of Mines
BES/ST-12	Atomistic Mechanisms of Metal-Assisted Hydrogen Storage in Nanostructured Carbon	Nidia Gallego	ORNL
	A Synergistic Approach to the Development of New Classes of Hydrogen	Jeff Long	
BES/ST-13 BES/ST-14	Storage Materials Elucidation of Hydrogen Interaction Mechanisms with Metal-Doped Carbon Nanostructures	Ragaiy Zidan	LBNL Savannah River National Lab
BES/ST-15	Characterization of Carbon Nanostructures in Pd Containing Activated Carbon Fibers Using Aberration-Corrected STEM	Nidia Gallego	ORNL

[
	Theoretical Investigation of the Energetics	Rachel Aga	ORNL
	of Hydrogen Interaction with Graphene		
	Layers: the Effect of Interlayer Spacing on		
BES/ST-16	Hydrogen Storage		
	Neutron Scattering Aided Studies of the	John Larese	ORNL
	Design, Synthesis and Thermo-dynamics		
BES/ST-17	of molecular hydrogen adsorption materials		
	First-Principles Studies of Phase Stability	Mei-Yin	
	and Reaction Dynamics in Complex Metal	Chou	Georgia Institute of
BES/ST-18	Hydrides		Technology
	Crystal and electronic structures of LiNH2	W.B. Yelon	University of
BES/ST-19	and related compounds		Missouri-Rolla
	Understanding the Role (and Controlling	Tabbetha	Louisiana Tech
	the Behavior) of Transition Metal Dopants	Dobbins	University
BES/ST-20	in NaAIH4 Systems		-
	Integrated Nanoscale Metal Hydride –	Yi-Ping Zhao	University of
	Catalyst Architectures for Hydrogen	Ũ	Georgia
BES/ST-21	Storage		U U
	The Molecular Design Basis for Hydrogen	Vijay John	Tulane University
BES/ST-22	Storage in Clathrate Hydrates	J- J	
	First Principles Based Simulation of	Qingfeng Ge	Southern Illinois
	Hydrogen Interactions in Complex	anglong co	University
BES/ST-23	Hydrides		Chirolony
BE0/01 20		Michael	University of Illinois
BES/ST-24	Dehydrogenation of Boron-Nanoclusters	Trenary	at Chicago
DL0/01-24		Mark Conradi	Washington
BES/ST-25	NMR Studies of Metal Hydrides: MgScHx		University
DE0/01-20		David	Oniversity
CCP-2	Enabling Hydrogen Transitions - NETL	Haberman	DOE - NETL; IF, LLC
001-2	Center for Intelligent Fuel Cell Materials Design	Joe Mausar	Chemsultants
FCP-1	Phase 1	JUE Mausai	International
	Poly(p-phenylene Sulfonic Acid)s with	Morton Litt	Case Western
	Frozen-in Free Volume for use in High		Reserve University
FCP-2	Temperature Fuel Cells		
101 2	Poly(cyclohexadiene)-Based Polymer	Jimmy Mays	U of Tennessee
	Electrolyte Membranes for Fuel Cell	onning ways	
FCP-3	Applications		
1010	NanoCapillary Network Proton Conducting	Peter	
	Membranes for High Temperature Hydrogen/Air	Pintauro	Case Western
FCP-4	Fuel Cells	1 Intadio	Reserve University
	Lead Research and Development Activity	James	U of Central Florida
	for High Temperature, Low Relative	Fenton	
FCP-5	Humidity Membrane Program		
	Protic Salt Polymer Membranes: High-	Dominic	Arizona State
	Temperature Water-Free Proton-	Gervasio	
FCP-6	Conducting Membranes		
	Novel Approaches to Immobilized	Andrew	Colorado School of
	Heteropoly Acid (HPA) Systems for High	Herring	Mines
	Temperature, Low Relative Humidity		
FCP-7	Polymer-Type Membranes		
101-1	High Temperature Membrane With	Ludwig Lipp	FuelCell Energy,
	Humidification-Independent Cluster		Inc.
FCP-10	Structure		
			l

	Design and Development of High-	Joyce Hung	General Electric
	Performance Polymer Fuel Cell		
FCP-11	Membranes		
	Dimensionally Stable High Performance	Han Liu	
FCP-12	Membrane		Giner Inc.
	Development of Higher Temperature	Tony	Oxford Perf. Matls.
	Membrane and Electrode Assembly for	DeCarmine	
	Proton Exchange Membrane Fuel Cell		
FCP-14	Device		
	Fluoroalkylphosphonic-acid-based proton	Stephen	Clemson
FCP-15	conductors	Creager	
	Dimensionally Stable High Temperature	Cortney	Giner
	Membranes	Mittelsteadt	Electrochemical
FCP-16			Systems
	New Proton Conductive Composite	Serguei Lvov	Penn State
	Materials with Co-continuous Phases	Ŭ	
	Using Functionalized and Crosslinkable		
FCP-17	TFE/VDF Fluoropolymers		
	Advanced Materials for Proton Exchange	James	Virginia Tech
FCP-18	Membranes	McGrath	5
	Characterization of PEMFC Membrane	Robert Moore	
FCP-19	Durability		U of So. Mississippi
	PEM Fuel Cell Freeze Durability and Cold Start	Jeremy	
FCP-21	Project	Meyers	UTC Power
FCP-22	Kettering University Fuel Cell Project	Joel Berry	Kettering University
		Dennis	
FCP-23	Sub-Freezing Start-up of a Fuel Cell	Papadias	ANL
	Fuel Cell Testing at the Argonne Fuel Cell	Ira Bloom	ANL
FCP-24	Test Facility		
	Impurity Effects on Membrane-Electrode	Debbie Myers	
FCP-28	Assembly Components	, ,	ANL
	Novel, Combinatorial Method for	Keith Kepler	Farasis Energy
	Developing Cathode Catalysts for Fuel	-	
FCP-30	Cells		
	Improved Fuel Cell Cathode Catalysts	Eugene	NuVant Systems
FCP-31	Using Combinatorial Methods	Smotkin	
	University of South Carolina Fuel Cell	John Van Zee	U of So. Carolina
FCP-32	Design Project		
	Powering Cell Phones with Fuel Cells	Malcolm	Tekion, Inc.
FCP-33	Running on Renewable Fuels	Mann	,
	Complex Coolant Fluid for PEM Fuel Cell	Satish	Advanced Fluids
FCP-34	Systems	Mohapatra	Tech.
	DMFC Prototype Demonstration for	Robert	MTI Micro Fuel
FCP-35	Comsumer Electronic Applications	Sievers	Cells
	Direct Hydrogen PEMFC Manufacturing Cost	Eric Carlson	
FCP-36	Estimation for Automotive Applications		TIAX
	Mass Production Cost Estimation for Direct H2	Brian James	
	PEM Fuel Cell System for Automotive		
FCP-37	Applications		DTI
	Economical High Performance Thermoplastic	Michael	
FCP-38	Composite Bipolar Plates	Bortner	Nanosonic, Inc.
	DMFC Power Supply for All-Day True-Wireless	Brian Wells	
FCP-39	Mobile Computing		Polyfuel, Inc.
	Development of a kW Prototype Coal-based	Steven	
FCP-41	Fuel Cell	Chuang	University of Akron

APPENDIX B: PROJECTS NOT REVIEWED

	Autotheorem of Quellie Defermeinen Deservel		
	Autothermal Cyclic Reforming Based	Ke Liu	
PDP-1	Hydrogen Generating System	Subodh K.	GE Energy
PDP-3	Materials Solutions for Hydrogen Delivery in Pipelines	Das	Secat, Inc.
FDF-3	Biological Systems for Hydrogen	Maria	Secal, IIIC.
PDP-4	Photoproduction	Ghirardi	NREL
PDP-5	Low Cost Hydrogen Production Platform	Tim Aaron	Praxair
FDF-5	Investigation of Bio-ethanol Steam	Umit Ozkan	Flaxall
		Unit Ozkan	Ohio State II
PDP-7	Reforming over cobalt based catalysts Carbon Molecular Sieve Membrane as	Paul KT Liu	Ohio State U Media & Process
PDP-9	Reactor for Water Gas Shift Reaction		Tech.
FDF-9	Maximizing Light Utilization Efficiency &	Tasios Melis	
	Hydrogen Production in Microalgal	1 43103 1010113	
PDP-11	Cultures		UC Berkeley
F DF-TT	Photoelectrochemical Water Systems for	John Turner	OC Derkeley
PDP-14	H2 Production		NREL
	Forecourt Storage and Compression	Bill Liss	
PDP-19	Options		GTI
101-13	Photoelectrochemical Generation of	Mano Misra	011
	Hydrogen Using Sonicated Hybrid Titania		
PDP-20	Nanotube Arrays		U of Nev. Reno
10120	Evaluation of Alternative Thermochemical	Michele Lewis	
PDP-21	Cycles	Michele Lewis	ANL
10121	UNLV Research Foundation High	Tony	7.112
	Temperature Heat Exchanger	Hechanova	
PDP-22	Development	riconariova	UNLV
	Membrane Applications for Nuclear	Brian Bischoff	0.121
PDP-23	Hydrogen Production Processes	Brian Bioonon	ORNL
	Materials for Nuclear Hydrogen Production	Dane Wilson	01412
PDP-24	Processes: Planning & Coordinating Task		ORNL
	Hybrid Sulfur Thermochemical Process	Bill Summers	
PDP-25	Development		SRS
	Advanced Water Gas Shift Membrane	Thomas	United
PDP-26	Reactor	Vanderspurt	Technologies Corp
	Robust Low-Cost Water-Gas Shift	Zhijiang Li	<u> </u>
	Membrane Reactor for High-Purity	, ,	
	Hydrogen Production from Coal-Derived		Aspen Products
PDP-27	Syngas		Group
	The Integration of a Structural Water Gas	Thomas	
	Shift Catalyst with a Vanadium Alloy	Barton	Western Research
PDP-28	Hydrogen Transport Device		Institute
	Production and Storage of Hydrogen Using	Gerald	U of Kentucky
PDP-29	C1 Chemistry	Huffman	Consortium
	High-Performance, Durable, Palladium-	Scott Hopkins	
	Alloy Membrane for Hydrogen Separation		
PDP-30	& Purification		Pall Corp.
	Production of Hydrogen for Clean and	Xunming	
	Renewable Sources of Energy for Fuel Cell	Deng	
PDP-35	Vehicles		U of Toledo
	Production, Fuel Cell, and Delivery	Yogi	
PDP-37	Research	Goswami	U of South Florida
	High Density Hydrogen Storage System	Dan Mosher	UTRC
	Demonstration Using NaAIH4 Complex		
STP-1	Compound Hydrides		

		Lennie	Sandia-Livermore
STP-11	Metal Hydride Center of Excellence	Klebanoff	
	Electron-Charged Graphite-Based	Chinbay Fan	Gas Technology
STP-13	Hydrogen Storage Material		Institute
	Nanostructured Activated Carbon for	Israel	State University of
STP-14	Hydrogen Storage	Cabasso	New York
	DOE Carbon-based Hydrogen Storage	Lin Simpson	NREL
	Center of Excellence: Center Highlights		
STP-20	and NREL Activities		
	Process for the Regeneration of Sodium	Ying Wu	Millenium Cell, Inc.
STP-22	Borate to Sodium Borohydride		
011 22	Chemical Hydride Slurry for Hydrogen	Andrew	Safe Hydrogen,
STP-23	Production and Storage	McClaine	LLC
011-20	Development of Regenerable High	Ashok Damle	Research Triangle
	Capacity Boron Nitrogen Hydrides for	ASHOK Darnie	Institute
			Institute
STP-24	Hydrogen Storage		
	Safety Analysis and Applied Research on	Clint Lane	Northern Arizona
	the Use of Borane-Amines for Hydrogen		U.
STP-28	Storage		
	DOE Chemical Hydrogen Storage Center	Bill Tumas	LANL
STP-29	of Excellence		
	A Synergistic Approach to the	Jeffrey Long	UC Berkeley/LBNL
	Development of New Classes of Hydrogen		
STP-30	Materials		
	Hydrogen Storage Materials with Binding	Tony	UC Santa Barbara
	Intermediate Between Chemisorption and	Cheetham	
STP-31	Physisorption	onoothain	
011 01		Viktor	Carnegie Institute
STP-32	Inorganic Clathrates for Hydrogen Storage	Struzhkin	of Washington
011 02	A Radically New Method for Hydrogen	James Shelby	Alfred University
STP-32	Storage in Hollow Glass Microspheres	barries offerby	Amed Oniversity
511-52		Jerry Atwood	U of Missouri
STP-33	Unexpected Gas Sorption Displayed by Organic Clathrates	Jerry Alwood	
517-33		Michael Miller	0DI
	National Testing Laboratory for Solid-State	Michael Miller	SwRI
STP-34	Hydrogen Storage Technologies		
	Low Cost, High Efficiency, High Pressure	Jui Ko	Quantum
STP-35	Hydrogen Storage		Technologies, Inc.
	Advanced Concepts for Containment of	Andrew	LLNL
STP-36	Hydrogen and Hydrogen Storage Materials	Weisberg	
		Jim Ritter	U of South
STP-37	Advanced Metal Hydrides		Carolina
	Clean Energy Research: Project III:	Michael	U of South
	Hydrogen Storage Using Chemical	Matthews	Carolina
STP-38	Hydrides		
000	A Cassette Based System for Hydrogen	Wayne Britton	FST Energy
	Storage and Delivery		i or Energy
STP-30			
STP-39	Purdue Hydrogen Technology Program	Jay Goro	Durdua I havarativ
STP-39 STP-40	Purdue Hydrogen Technology Program	Jay Gore	Purdue University
STP-40	Purdue Hydrogen Technology Program Center for Hydrogen Storage Research at	Andrew	Delaware State
	Purdue Hydrogen Technology Program Center for Hydrogen Storage Research at Delaware State University	Andrew Goudy	Delaware State University
STP-40 STP-41	Purdue Hydrogen Technology ProgramCenter for Hydrogen Storage Research atDelaware State UniversityUniversity of Arkansas at Little Rock	Andrew Goudy Alexandru	Delaware State
STP-40	Purdue Hydrogen Technology ProgramCenter for Hydrogen Storage Research atDelaware State UniversityUniversity of Arkansas at Little RockHydrogen Storage Project	Andrew Goudy Alexandru Biris	Delaware State University U of Arkansas
STP-40 STP-41	Purdue Hydrogen Technology ProgramCenter for Hydrogen Storage Research atDelaware State UniversityUniversity of Arkansas at Little Rock	Andrew Goudy Alexandru	Delaware State University
STP-40 STP-41	Purdue Hydrogen Technology ProgramCenter for Hydrogen Storage Research atDelaware State UniversityUniversity of Arkansas at Little RockHydrogen Storage Project	Andrew Goudy Alexandru Biris	Delaware State University U of Arkansas
STP-40 STP-41 STP-42	Purdue Hydrogen Technology ProgramCenter for Hydrogen Storage Research atDelaware State UniversityUniversity of Arkansas at Little RockHydrogen Storage ProjectFirst-Principles Computational Search for	Andrew Goudy Alexandru Biris Vidvuds	Delaware State University U of Arkansas

APPENDIX B: PROJECTS NOT REVIEWED

	Hydrogen from Biomass for Urban	Kofi Bota	
TVP-4	Transportation		Clark Atlanta Univ.
	Technology Validation: Fuel Cell Bus	Leslie Eudy	NREL
TVP-7	Evaluations	-	
	R&D of a PEM Fuel Cell, Hydrogen	Ed Kiczek	Air Products
	Reformer, and Vehicle Refueling Facility		
TVP-12	(Las Vegas Energy Park)		
	To Evaluate Zero Emission Propulsion and	Arthur	Santa Clara Valley
TVP-13	Support Technology for Transit Buses	Douwes	Trans Authority