

ENERGY

Nuclear-Based Hydrogen R&D

Carl Sink and Amy Taylor Nuclear Hydrogen Initiative Office of Nuclear Energy

2006 DOE Hydrogen Program Merit Review and Peer Evaluation Meeting

May 16, 2006

Origin of the Nuclear Hydrogen Initiative (NHI)

FY 2003

- → \$2M appropriated under Generation IV Nuclear Energy Systems Initiative to investigate hydrogen production using an advanced nuclear reactor
- → Program planning for NHI began
- FY 2004
 - → First NHI appropriation: \$6.5M
 - → Nuclear Hydrogen R&D Plan issued March 2004
 - ➔ Program focus: process development for sulfur-iodine cycle and hightemperature electrolysis and modeling of high-temperature heat exchangers
- FY 2005
 - → NHI receives \$9M appropriation
 - Program focus: process development for sulfur-iodine cycle and hightemperature electrolysis and materials for high-temperature heat exchangers

FY 2006

- → NHI receives \$25M appropriation
- ➔ Program focus: construct integrated laboratory-scale experiments for sulfuriodine cycle and high-temperature electrolysis, process development for hybrid sulfur and calcium-bromine cycles, identification of most promising alternative cycles, and supporting technologies (membranes, catalysts, materials, and heat exchangers)

Program Goal

The goal of NHI is:

To demonstrate the commercial-scale, economicallyfeasible production of hydrogen using nuclear energy by the year 2020

In support of this goal, NHI has these major project targets:

- → 2008: Operate laboratory-scale thermochemical and electrolytic processes to determine feasibility of coupling them with a nuclear reactor
- → 2011: Select process for coupling with advanced nuclear reactor as part of the Next Generation Nuclear Plant
- → 2014: Pilot-scale demonstration of thermochemical hydrogen production system for use with nuclear reactors that projects to a cost of \$2.50/gge (ultimate target: \$3.50/gge delivered)
- → 2020: Engineering-scale demonstration of thermochemical hydrogen production system for use with nuclear reactors that projects to a cost less than \$2.00/gge (\$3.00/gge delivered)

Program Scope

Thermochemical Cycles

Offer potential for high efficiency hydrogen production at large-scale production rates, but technology is relatively immature.

High-Temperature Electrolysis

Based on much of the technology developed for solid oxide fuel cells, high-temperature electrolysis promises higher efficiencies than conventional electrolysis.

Systems Interface

→ Deals with issues associated with interface between the nuclear reactor and the hydrogen production process, balance of plant, and infrastructure and support facilities for the processes' experimental demonstrations.

Technical Integration

→ System studies to help focus program research and provide the extensive coordination necessary for such a complex program.

Progress on Thermochemical Cycles

Sulfur-lodine (S-I) Cycle

- → Collaboration between DOE and French Commissariat à l'Energie Atomique (CEA) under an International Nuclear Energy Research Initiative (I-NERI)
 - Sulfuric Acid Decomposition SNL; Bunsen Reaction CEA; Hydriodic Acid Decomposition – General Atomics
 - Integrated Laboratory-Scale Experiment will begin operation in early FY 2008.

Hybrid Sulfur (HyS) Cycle [SRNL]

- ➔ Primary research focus on development of a SO2 H2O electrolyzer
- ➔ Electrolyzer to be used in conjunction with sulfuric acid decomposition section being developed for the S-I cycle in an Integrated Laboratory-Scale Experiment
- Calcium-Bromine (Ca-Br) Cycle [ANL]
 - → Go/No-Go decision on the viability of Ca-Br cycle in June 2006

Alternative Thermochemical Cycles [ANL]

- Several cycles have potential for high efficiencies or operation at lower temperatures
- Coordination with the UNLV Solar Hydrogen Generation Research (SGHR) project
- Subcontract to Universities to analyze and evaluate the most promising cycles, including flowsheet analysis on selected cycles

Progress on High-Temperature Electrolysis (HTE)

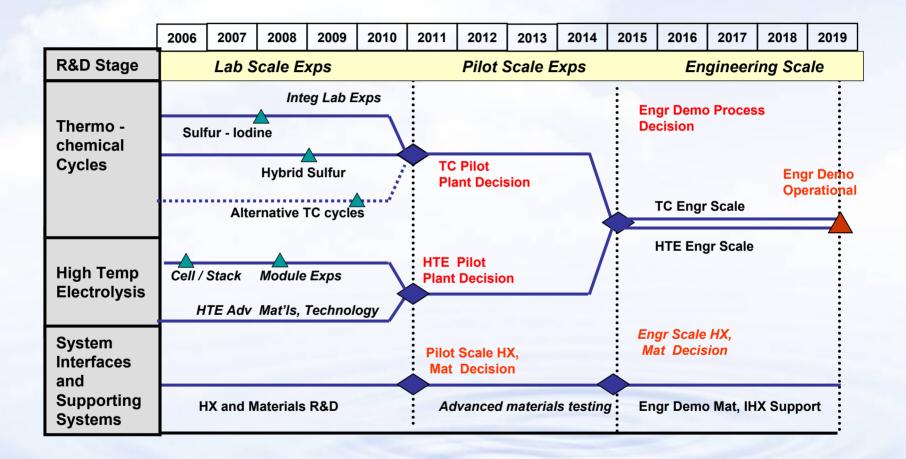
- Process Development [INL, Ceramatec, ANL, UNLV, ORNL]
 - → Activities coordinated with DOE solid oxide fuel cell research activities
 - Cell electrode materials with improved durability for variable cell environment being developed
 - ➔ High-temperature inorganic membrane for the separation of hydrogen from steam being developed to improve the overall production efficiency
 - Components for laboratory-scale experiments fabricated; button cell and stack experiments conducted to evaluate candidate electrolyzer characteristics and performance
 - ➔ 1000-hour continuous production run at >100 liters/hour completed February 2006
- Computational Fluid Dynamics (CFD) [ANL]
 - Modeled integrated performance of an HTE plant and the thermal optimization of the reactor plant through various component arrangements
 - → Current focus on analyses of individual flow channels in a solid oxide electrolyzer cell model the temperature, current density, and local hydrogen production

Progress on Systems Interface

- Identification of issues related to coupling an advanced nuclear reactor to a high-temperature hydrogen production process [INL]
 - → High-temperature heat exchangers
 - → Heat transfer fluids
 - → Materials of construction
 - → Safety
 - → Environmental requirements
 - → Licensing
 - Oxygen and hydrogen handling
- Current focus on S-I and HTE heat exchanger requirements and analysis of the heat transfer medium
- Establishment of a partnership between universities, private industry and national laboratories [UNLVRF]
 - → Identify candidate materials
 - → Perform screening corrosion (coupon) tests
 - → Perform physical property tests

Progress on Technical Integration

Provides coordination between program activities and conducts all necessary systems analysis [SNL]


- The NHI systems analysis activity coordinates with:
 - → Generation IV Evaluation Methodology Working Group (EMWG)
 - Office of Energy Efficiency and Renewable Energy's Hydrogen Analysis Working Group (H2A)

Current systems analysis focus:

- → Identify nuclear-based hydrogen system requirements
- → Evaluate system configuration options
- Develop criteria and framework for comparison of hydrogen production process options
- ➔ Identify required nuclear hydrogen infrastructure and potential markets to estimate infrastructure costs for hydrogen delivery.
- Investigate technology implications of potential applications and implementation strategies

Program Schedule

Hydrogen Production Feasibility Study

- EPAct Section 634 calls for two projects to demonstrate the commercial production of hydrogen at existing nuclear power plants, preceded by an economic analysis of such production
- NHI has solicited proposals for industry to perform a feasibility study involving small-scale hydrogen production equipment utilizing nuclear energy, to inform the required economic analysis
- Purpose is to obtain analysis on the economics, regulatory requirements, and environmental impacts of hydrogen production at existing nuclear power plants
- Solicitation was announced on April 13, 2006; proposals due by June 5, 2006.

See www.nuclear.gov for announcement and links

Conclusion

NHI is progressing on schedule to meet our milestones and program goals

Budget support for the program remains strong

• See www.hydrogen.energy.gov for more details

