Analysis of the Hydrogen Production and Delivery Infrastructure as a Complex Adaptive System

> George S. Tolley (312) 431-1540 gtolley@rcfecon.com

RCF Economic and Financial Consulting, Inc. May 18, 2006

This presentation does not contain any proprietary or confidential information

Project ID # AN3

## Overview

#### Timeline

- Project start date: July 2005
- Project end date: Dec 2008
- Percent complete: 15%

### **Budget**

- Total project funding \$3,616,634
- FY05
  - \$401,071 budgeted
  - \$70,000 funded
- FY06
  - \$1,225,830 budgeted
  - \$600,000 funded
- FY07
  - **a** \$1,719,500
- FY08
  - **a** \$270,233

#### **Barriers**

#### Barriers addressed

- Lack of understanding of the transition of a hydrocarbon-based economy to a hydrogenbased economy
- Lack of consistent data, assumptions and guidelines
- Lack of prioritized list of analyses for appropriate and timely recommendation

#### **Partners**

- RCF, prime
- Argonne National Laboratory
- Air Products and Chemicals
- BP
- Ford Motor Co.
- University of Michigan
- World Resources Institute

## **Objectives**

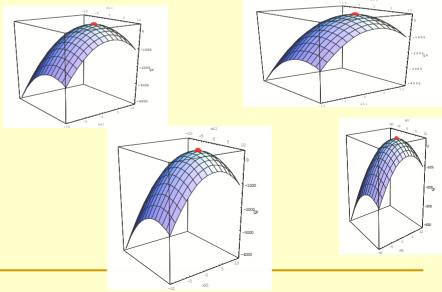
- Use agent-based modeling (ABM) to provide insights into likely infrastructure investment patterns
- Deal with chicken-or-egg aspect of early transition
- Provide answer to the question, "Will the private sector invest in hydrogen infrastructure?"

## Approach

- Focus on investments as business decisions
- Develop basis for preliminary assessment of profitability
- Prepare ABM for detailed simulations

### Agent-Based Modeling Is Used to Simulate Business/Investment Decisions

- An agent-based model consists of
  - A set of agents
  - A set of agent relationships
  - A *framework* for simulating agent behaviors or decision-making and interactions


#### • **AGENTS** are individuals with characteristics or attributes

- Set of rules governing agent behavior or decisionmaking capability, protocols for communication
- Respond to the environment and interact with other agents in the system
- Identifiable, discrete units that can learn and adapt
- Goal-directed, autonomous (self-directed, no central authority or controller exists)
- Agents are heterogeneous with diverse characteristics
- ABMS simulates the behaviors and interactions of a large number of individuals (agents) and studies the macro-scale consequences of these interactions



# What are the **Strengths** of the H2-Agent-Based Approach?

- Most traditional H2 transition models assume
  - □ Single decision-maker with perfect foresight, often with 1 objective (least cost)
  - Energy markets in stable equilibrium
- The H2 agent approach addresses many key features of today's energy markets
  - Multiple stakeholders with *different* strategies, risk preferences, and (multiple) objectives
  - Each stakeholder maximizes own objectives and not social welfare
  - Objectives may be conflicting
  - Decisions are based on *imperfect* knowledge (uncertainty) and a mix of private and public information
  - Stakeholders *learn* and adapt to real or perceived changes in behavior of others or operating environment



## **Business Decision Framework**

- Business Goals
- Business Profitability
- Expectations
- Decision Algorithm
- Sequential Moves

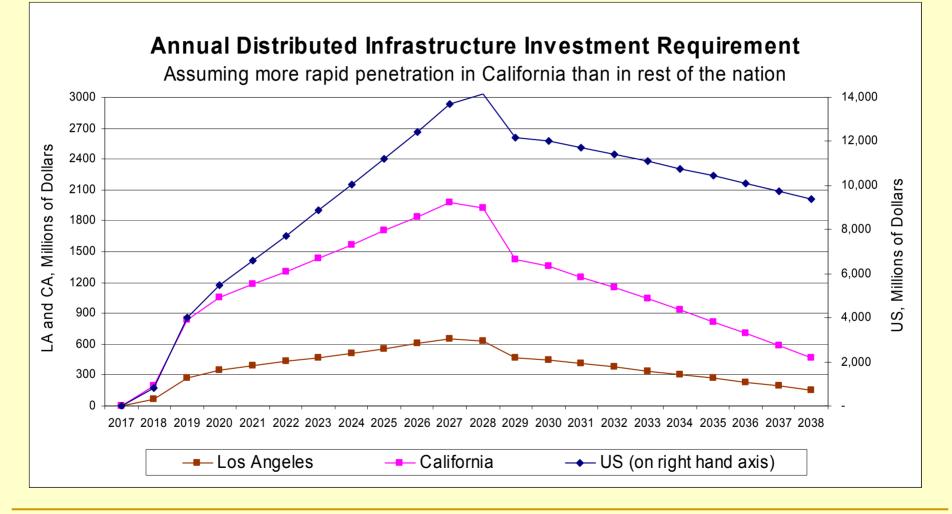
# Technical Accomplishments/ Progress/Results

- Preliminary cost assessment for Los Angeles, California, U.S.
- Expansion path of distributed hydrogen production
- Proof of principle calculations for business decision model
  - risk aversion
  - Infrastructure investors require customers but customers require infrastructure (chicken-or-egg problem)
- Risk exposure of investors
- GIS map platform for ABM modeling of Los Angeles
- Lessons from previous technological innovations

### Total 20-Year Business Cost (2018-2038)

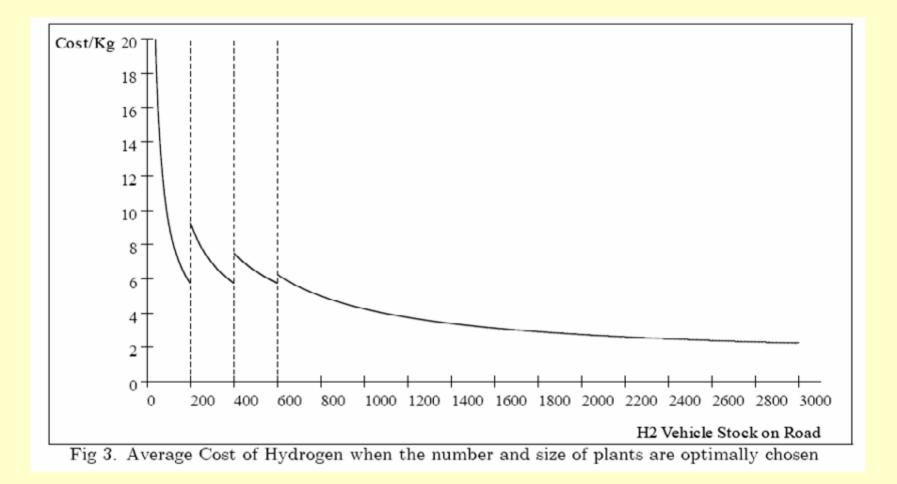
|               | Distributed<br>Production<br>(1500 kg/day SMR) | Centralized<br>Production<br>(380K kg/day SMR) |
|---------------|------------------------------------------------|------------------------------------------------|
| Los Angeles   | \$ 8.1 B                                       | \$ 9.1 B                                       |
| California    | \$24.8 B                                       | \$ 27.7 B                                      |
| United States | \$203.9 B                                      | \$ 228.0 B                                     |

Source: Estimates based on H2A Production and Delivery Models


### Hydrogen Investment Costs in Perspective

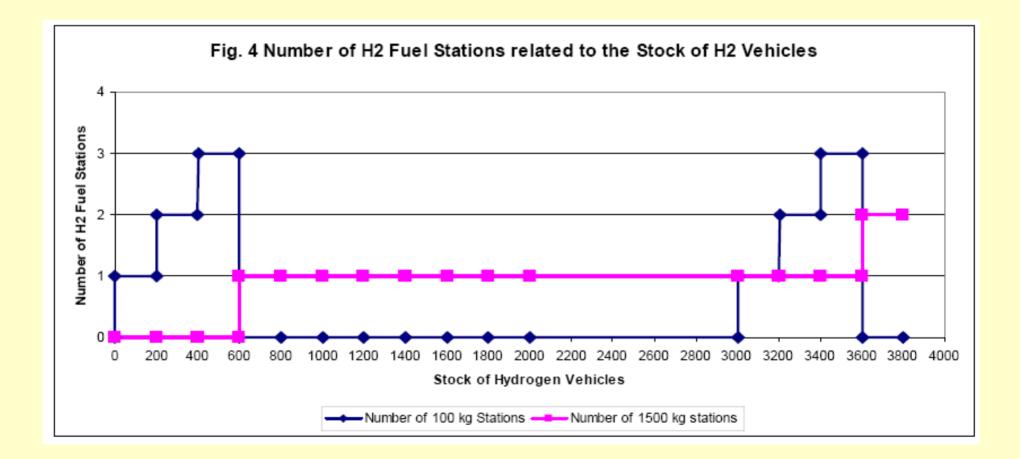
 Infrastructure costs for hydrogen fuel supply over 2018-2038 are significant on an annual basis.

| (In Billions of Dollars)                          | LA   | CA  | USA  |
|---------------------------------------------------|------|-----|------|
| Peak Annual<br>Investment                         | 0.65 | 2.0 | 14.1 |
| Average Annual<br>Investment (over 2018-<br>2038) | 0.39 | 1.2 | 9.7  |


- These investments may be undertaken by major players capable of making large capital investment outlays each year.
- For instance, BP invests about \$13 billion each year, and Ford about \$7 billion each year.
- Investment requirements for developing a hydrogen fuel supply are small relative to total national investment, but not insignificant relative to investment budgets of major players.

### Annual Investment Cost for Infrastructure Supporting Posture Plan's Market Penetration




#### Scale of Installations

Cost Curve of Hydrogen from Distributed SMR Facilities



#### **Scale of Installations**

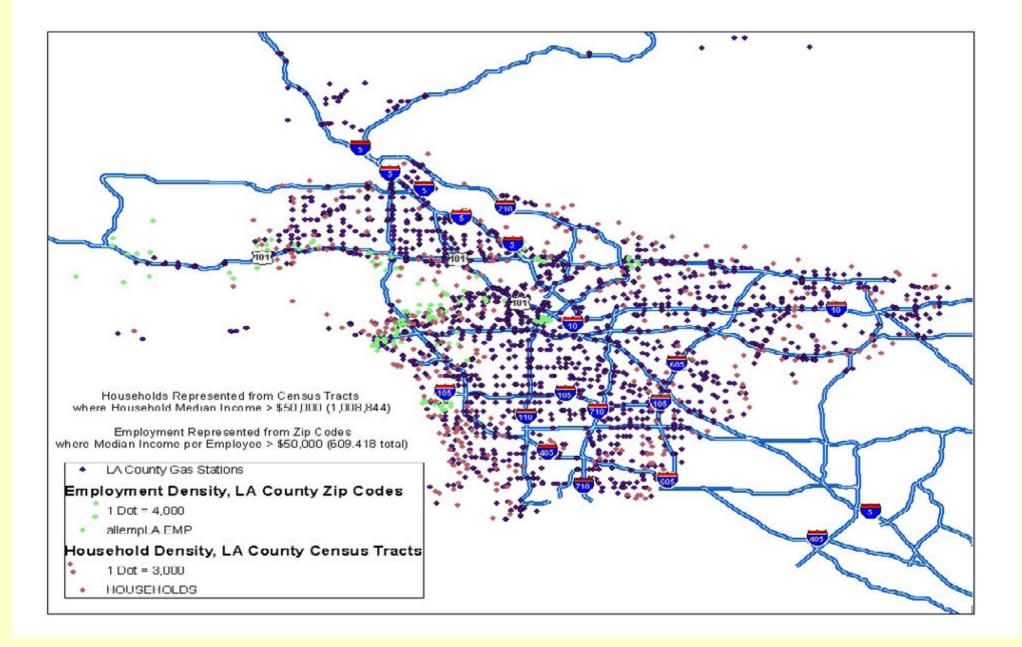
Expansion Path of Distributed Hydrogen Production as Number of Hydrogen Vehicles Increases



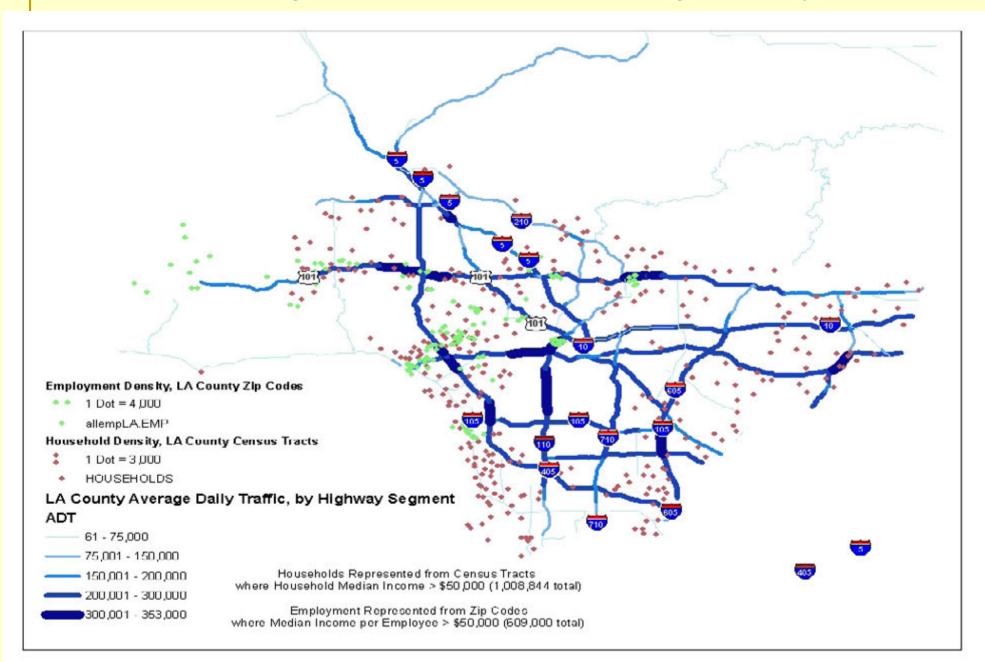
# **Proof of Principle of Decision Model**

Example

Assume: simplified quadratic utility function, price and cost parameter values


Magnitude of stylized investment

| with risk neutrality                           | 25.0 x 10 <sup>3</sup> |
|------------------------------------------------|------------------------|
| with risk aversion                             | 18.1 x 10 <sup>3</sup> |
| with risk aversion and chicken-egg formulation | 21.6 x 10 <sup>3</sup> |


Analytic solutions not possible for realistic cases
Excellent candidate for ABM calibration and simulation



#### Map 8: All Layers of Agents (Employment, Households, Gas Stations)



#### Map 9: Average Annual Traffic Patterns in Los Angeles County



### Lessons Learned from Previous Technological Innovations

| Technology | Market Penetration                |                  |                                                                   |                                   | Size of Investment |              | Government                                    |
|------------|-----------------------------------|------------------|-------------------------------------------------------------------|-----------------------------------|--------------------|--------------|-----------------------------------------------|
|            | Adoption indicator                | Time<br>Required | Substitutes                                                       | Initial<br>Users                  | Cost per<br>Unit   | Divisibility | Intervention or<br>Assistance                 |
| Telegraph  | 60% of<br>maximum<br>wire mileage | 35 yrs           | no electronic<br>communication;<br>horse, river<br>transportation | railroads,<br>finance<br>indsutry | high               | high         | none of note                                  |
| Telephone  | in 60% of<br>households           | 73 yrs           | telegraph<br>rough<br>substitute                                  | businesses                        | moderate           | high         | none                                          |
| Radio      | in 60% of<br>households           | 10 yrs           | telegraph,<br>telephone,<br>phonograph                            | govt,<br>amateurs                 | moderate           | high         | initial demand                                |
| Automobile | in 60% of<br>households:<br>yrs   |                  | horse                                                             | individuals                       | high               | high         | highway<br>construction                       |
| Television | in 60% of<br>households           | 9 yrs            | radio, movies                                                     | individuals                       | high               | high         | delay of<br>commercialization,<br>wartime R&D |

- All innovations take time to reach equilibrium
- Chicken-egg problem of initial hydrogen investment is greater than for any 20<sup>th</sup> century innovation

### **Future Work**

#### • FY06:

- Empirically specify goals, profitability & expectations components of business decision algorithms
- Initial ABM simulations
- Focus on distributed production

#### • FY07:

- Extend analysis to additional pathways
- Experiment with additional business decision algorithms

# Summary

- Hydrogen infrastructure investments are small relative to total national investment but may be big relative to even very large companies—moms & pops won't be distributed station investors
- Risk aversion is a relevant consideration and will have a noticeable dampening effect on infrastructure investment
- If chicken-egg problems can be surmounted, investment would proceed more rapidly than in markets with completely independent supply & demand
- Agent-based modeling necessary to address early transition's chicken-egg problems