

Impact of Renewables on Hydrogen Transition Analysis

Project ID # ANP2

DOE Merit Review May 17, 2006

Stephen Lasher lasher.stephen@tiaxllc.com

Stefan Unnasch unnasch.stefan@tiaxllc.com TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390

Tel. 617- 498-6108 Fax 617-498-7054 www.TIAXLLC.com Reference: D0268

© 2006 TIAX LLC

This presentation does not contain any proprietary or confidential information

Timeline

Start date: May 2006

End date: Aug 2006

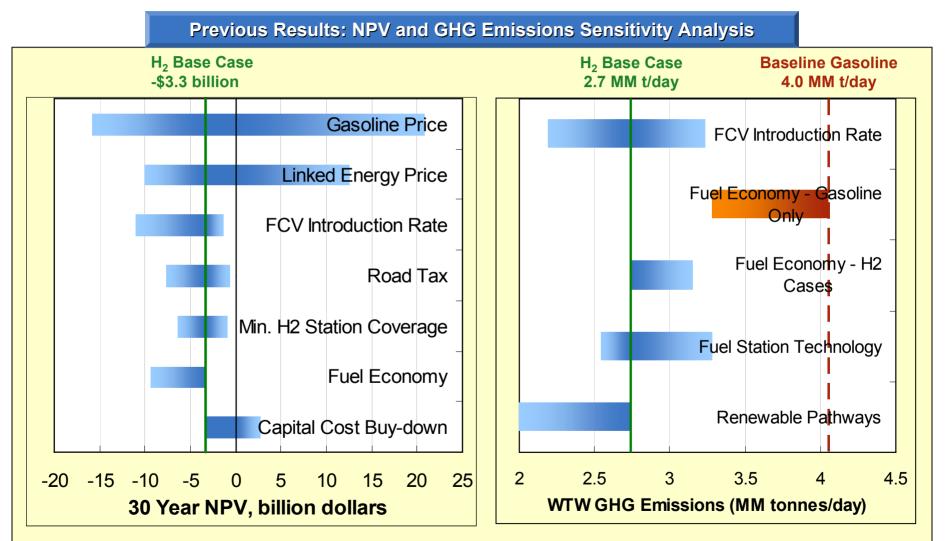
•0% Complete (new project)

Barriers

- Production AD. Market and Delivery
- Delivery A. Lack of H₂/ Carrier and Infrastructure Options Analysis
- Storage V. Life Cycle and Efficiency Analysis

Budget

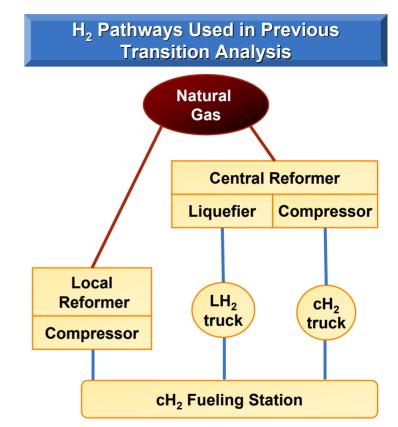
- Total project funding (FY06)
 - DOE share = \$100k
 - No cost share


Partners

- Collaboration: H2A, UC
 Davis Hydrogen Pathways
 program
- Feedback: National Labs, Energy Companies, Automakers, Hydrogen technology developers

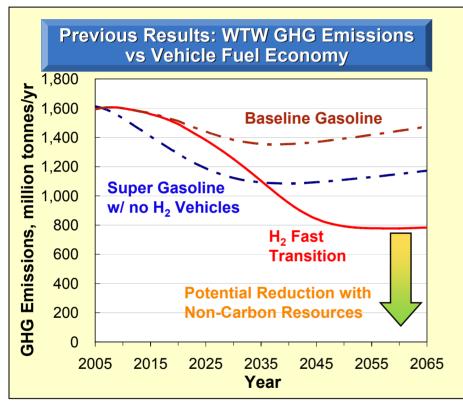
Background Transition Model

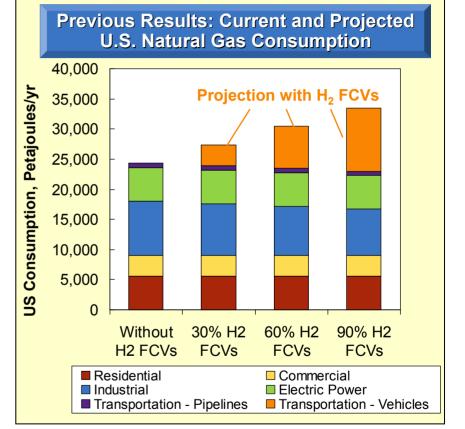
TIAX has previously developed a Transition Model to assess the impacts of building a H₂ fuel infrastructure for light duty vehicles.



Background Near-term Pathways

The previous work focused on near-term hydrogen production and delivery technologies to provide a basis to estimate transition costs.


- We previously analyzed a transition based on hydrogen produced exclusively from natural gas
- Other fuel and feedstock choices will be part of the transition, but costs are unlikely to be less than the existing natural gas options
- In the long-term, other pathways (e.g. pipeline transport, renewable-based production) could be more attractive, but were excluded from the original transition analysis

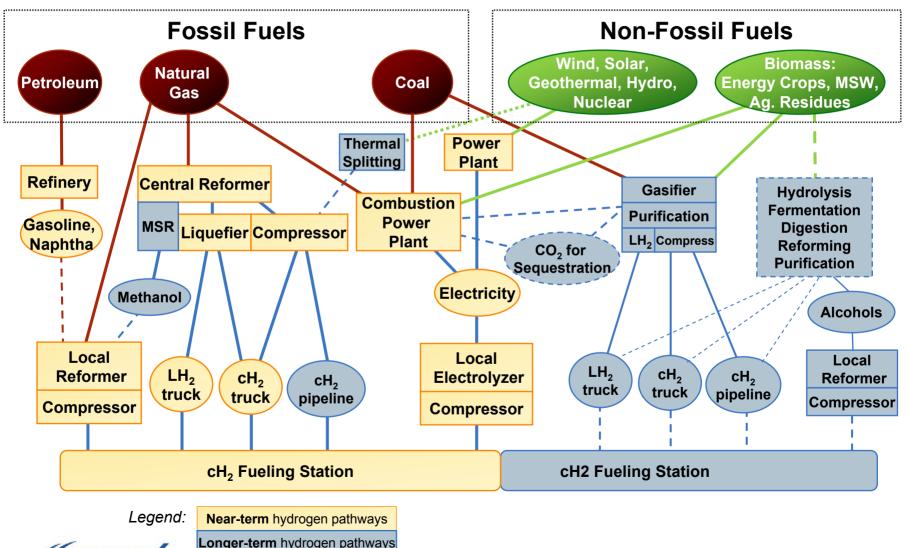

* cH₂ = compressed gaseous hydrogen; LH₂ = liquid hydrogen

It is widely recognized that national benefits would be greatly enhanced if the sources of hydrogen were non-fossil.

Fleet Fuel Economy Scenarios, mpgge (2050)	Hydrogen	Gasoline
Hydrogen Fast Transition	69	31
Baseline Gasoline (no H ₂ Vehicles)	NA	31
Super Gasoline w/ no H ₂ Vehicles	NA	38

Source for non-vehicle categories: EIA Annual Energy Review 2004, Report No. DOE/EIA-0384(2004), Table 6.5: NG Consumption by Sector, 1949-2004. Numbers represented are for year 2003. Reduced natural gas for refinery operations for displaced gasoline is reflected in industrial sector.

However, important questions remain as to the feasibility of the nonfossil options, especially renewables.


How much will it cost to generate hydrogen from renewables?

- Production costs variable (i.e. feedstock and processing) and fixed capital investment
- Transportation costs could be significant
- How much can be used? Can hydrogen pipelines cost-effectively transport hydrogen? Where would hydrogen pipelines be located?
 - Resource availability
 - Proximity to hydrogen demand
 - Daily and seasonal variations
 - Competition from other options (e.g. other renewables, coal and nuclear)

Background Scope

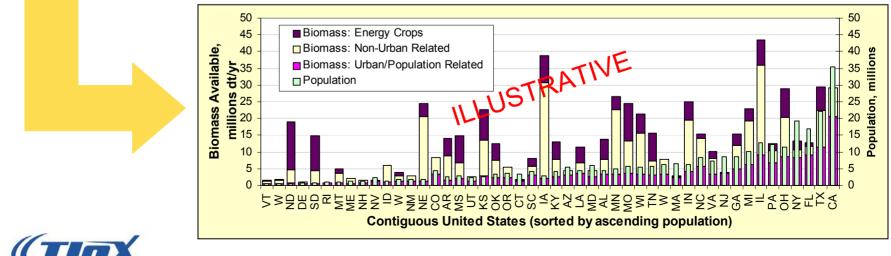
This new project will expand the previous analysis by exploring the role of renewables in the hydrogen transition.

SL/042406/B1412 ANP2_Lasher_Renew_draft1.ppt 6

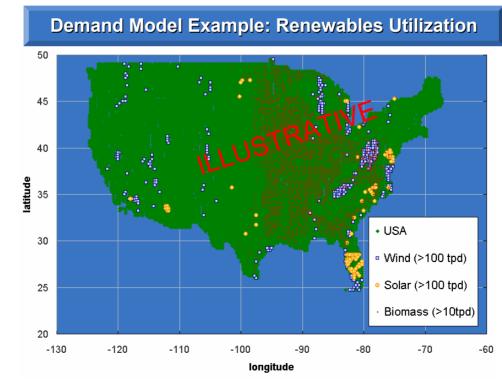
 Evaluate the impact of renewables on hydrogen transition costs and Wellto-Wheel benefits

- Incorporate renewable hydrogen resources and scenarios into previous hydrogen transition analysis
- Evaluate impact on hydrogen infrastructure costs, primary energy use, petroleum reduction and GHG emissions over time
- Identify the most promising renewable pathways for hydrogen production
 - Develop likely future scenarios for renewable supply and hydrogen demands
 - Consider constraints on resource availability and hydrogen delivery

This project will incorporate renewable production scenarios into the previously developed Hydrogen Transition Model.


- Estimate demand-based use of renewable hydrogen for various future scenarios, including the amount, geographical location, and delivered cost
 - Leverage previous assessments of renewable potential (NREL, ORNL)
 - Develop a Demand Model to evaluate renewable-based H₂ production/ delivery costs and constraints based on regional supply and demand
 - Incorporate H2A assumptions, scenarios and results
- Update previous Transition Model and analysis to reflect the potential use of renewables taking into account future scenarios from above, including:
 - Electrolysis based production
 - Long-distance hydrogen transmission pipelines
 - Sensitivity analysis taking into account variations in scenario assumptions (e.g. hydrogen demand, equipment capital costs)
- Recommend future analysis needs and development pathways to accelerate the use of renewables for hydrogen production

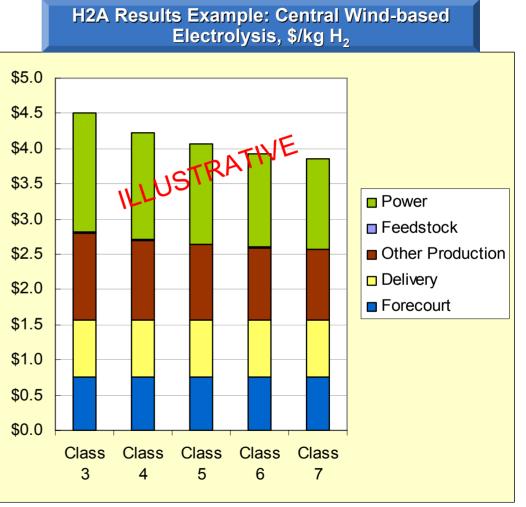
First, we will combine previous resource assessments with land use information to determine geographical availability of renewables.


	U.S. Available Quantity at 0-40 \$/dt (farm-gate price), million dt/year			
Biomass Type	ADL	ORNL ⁶	USDA ⁷	Comments
Agricultural Crop Residues ¹	156	151	425	Both analyses used the same source for corn stover and wheat straw. The ADL analysis included rice straw and cotton stalks. USDA assumes increase in agricultural productivity.
Forest Residues	84	45	124	Both analyses used the same source. The ADL analysis used updated data. USDA includes togging residues/culls and also fire hazard thinning.
Primary Mill Residues	2	90	196	Both used the same source. ORNL data included the currently used portion for user wood fiber, and misc. by-products). ADL excluded currently used partion of primary mill wastes. USDA includes fuelwood and mill wastes.
Other Wastes ²	161	37	L H	RNL included used and unused fractions of MSW wood, yard trimmings, and C&D wood. The ADL analysis included only unused fractions of organic MSW, C&D wood, and UTR. USDA is urban wood waste.
Biogas ³	11	NA		USDA wrapped into sludge below.
Sludge⁴	50	NA	75	USDA includes manure, biogass, sludge and others.
Potential Energy Crops⁵	159	188	431	ADL analysis assumed a linear interpolation of the ORNL data. USDA assumes meeting current production of other Ag. Products, putting 50 million acres into energy crop production, plus 56 tons of ethanol.
Total	623	511	1300	

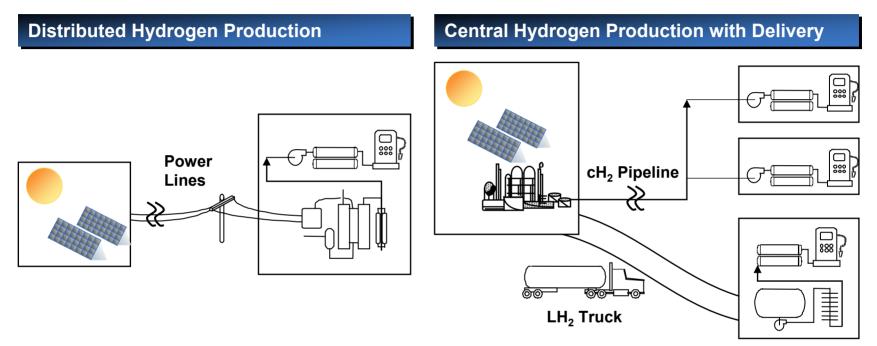
- 1. Agricultural crop residues includes corn stover, wheat straw, rice straw, and cotton stalks.
- Other wastes include the organic fraction of municipal solid waste, urban tree residues, and construction and demolition wood.
- 3. Biogas includes landfill gas, digester gas, and sewage gas.
- 4. Sludge includes manure and bio-solids.
- 5. Potential energy crops include switchgrass, hybrid poplar, and willow.
- Based on a presentation given by Marie Walsh of ORNL (Walsh, 2000). Transportation cost assumed to be \$10/dt to convert the ORNL data
- USDA report 2005 "A billion-ton feedstock supply for a bioenergy and bioproducts industry"

Next, we will develop a Demand Model to evaluate renewable-based H₂ costs and constraints based on regional supply and demand.

- The model will match renewable hydrogen resources with demand so that utilization of renewables can be assessed
 - Determines the appropriate location of central hydrogen production
 - Auctions off hydrogen to the lowest bidder
- The model also calculates the average cost of hydrogen by supply and demand



Approach Demand Model Inputs

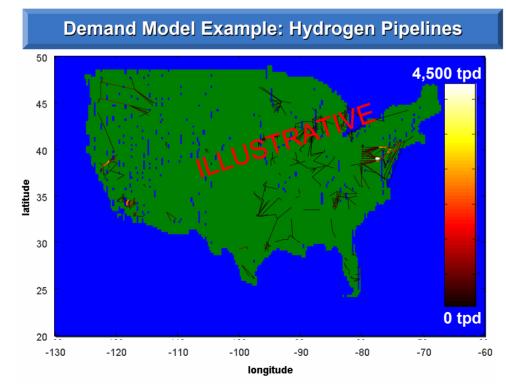

We will incorporate H2A assumptions, scenarios and results into the Demand Model.

- Hydrogen costs for 20+ H2A runs
 - Central and forecourt production
 - Wind-based electrolysis for various wind classes
 - Solar-based electrolysis based on solar insolation values
 - Biomass conversion (e.g. energy crops, MSW, agricultural residues)
- H2A hydrogen demand scenarios
 - Large and small cities, rural
 - Vehicle market penetration and fuel economy assumptions

We will investigate both distributed and central hydrogen production options.

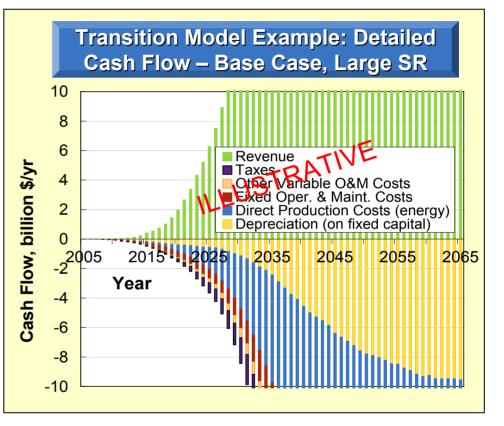
Example:

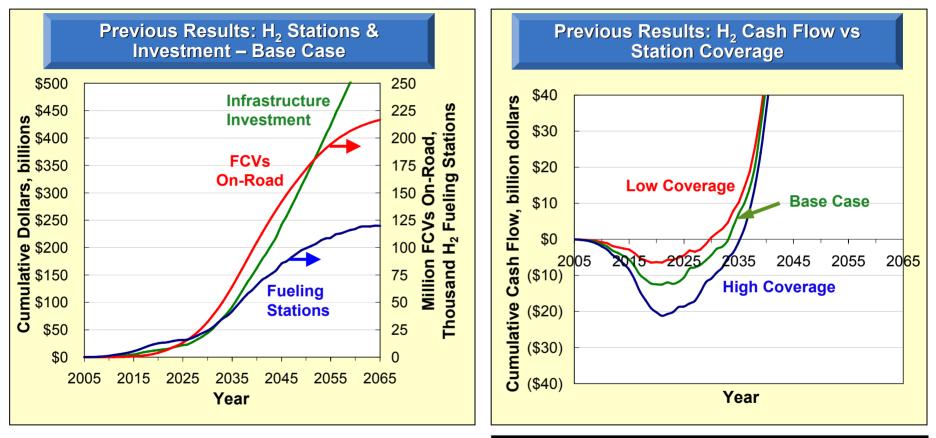
- Dedicated solar PV power plants
- Transmit electricity to H₂ fueling stations
- On-site electrolysis


Example:

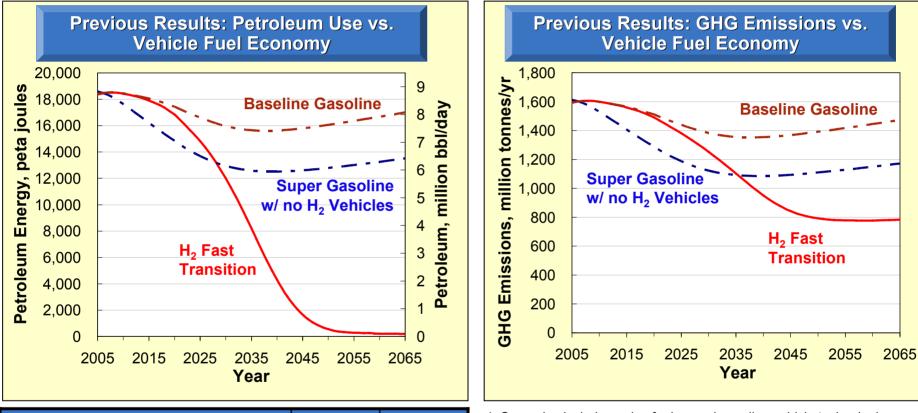
- H₂ generation in central locations at solar PV fields
- Pipeline or LH₂ transmission/ distribution to fueling stations

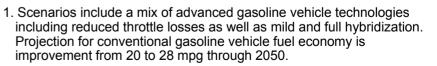
For central production, the Demand Model will be used to determine the location and size of long-distance hydrogen pipelines.


- Location and size of H₂ flows will be calculated based on results of H₂ auction
- Model will consolidate information into a scenario for pipeline transmission capacity
 - Pipelines will use Dijkstra's algorithm (like mapquest.com) to go from source to sink via allowable nodes (cities)
 - > Pipelines in close proximity will be consolidated to one, larger pipeline


Next, we will update the previous Transition Model and analysis to reflect the potential use of renewables.

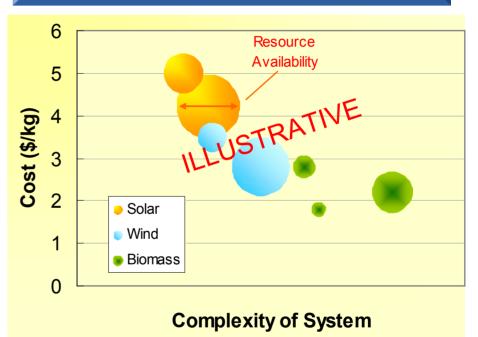
- Transition Model sums the costs and revenues for individual stakeholders and the total hydrogen infrastructure
- Calculates revenues based on hydrogen demand and price, which vary over time
- Costs include taxes, depreciation on capital, feedstock and other operating costs estimated for each type of infrastructure
- Capital costs take into account production volume economies of scale
- The sum of revenue and costs are presented as the cash flow over time
- NPV is calculated from the sum of discounted cash flows


The Transition Model will be used to calculate economic impacts, such as capital investment, cash flow and NPV on an annual basis.


H ₂ Station Minimum Coverage Scenarios	2015
Low Coverage Requirement	5%
Base Case	10%
High Coverage Requirement	15%

The Transition Model will also be used to calculate environmental impacts, such as primary energy use and GHG emissions.

Fleet Fuel Economy Scenarios, mpgge (2050)	Hydrogen	Gasoline
Hydrogen Fast Transition	69	31
Baseline Gasoline (no H ₂ Vehicles)	NA	31
Super Gasoline w/ no H ₂ Vehicles	NA	38



Approach Recommend Pathways

Finally, we will recommend future analysis needs and development pathways to accelerate the use of renewables for hydrogen production.

- Assess resource limitations
- Develop different spatial scenarios
- Iterate with delivery analysis to identify implementation constraints
- Rank renewable pathways
- Solicit stakeholder input
- Perform sensitivity analysis
- Make recommendations

Renewable Pathway Ranking Example: Hydrogen Cost vs. Complexity

Note: Bubble size corresponds to resource availability. Different bubbles represent central plant and small scale options as well as different biomass categories.

