

Complex Hydrides – A New Frontier for Future Energy Applications

# Mechanochemsitry, Nanostructuring and Potential for Reversibility

### Vitalij K. Pecharsky

Materials and Engineering Physics Program Ames Laboratory of the US Department of Energy and Department of Materials Science and Engineering Iowa State University, Ames, IA 50011-3020

Vitkp@AmesLab.Gov

2006 Hydrogen Program Annual Review Funding: BES, Materials Sciences Division



- Ames Laboratory:
  - Vitalij Pecharsky, Oleksandr Dolotko, Haiqiao Zhang
  - Scott Chumbley, Ozan Ugurlu
  - Marek Pruski, Jerzy Wiench
  - Victor Lin, (Cedric) Po-Wen Chung
- Virginia Commonwealth University:
  - Purusottam Jena, Sa Li







- Synthesis and processing:
  - Transformations of complex hydrides in solid state
  - Nanostructuring
    - Stochastic (mechanochemistry)
    - Controlled (micelle self assembly in non-polar organic solvents)
  - Solid state synthesis
  - High H-pressure mechanochemistry (near future)
- Characterization:
  - Diffraction and microscopy
  - Solid state NMR
  - PCI (PCT-PRO from HyEnergy LLC, near future)
- Theory and computation:
  - Super-cell band structure methodology
    - Density functional theory
    - Generalized gradient approximation
    - PAW potential
    - VASP code



## Mechanochemistry





SPEX: high energy; control by balls-to-material mass ratio

Magnetic: variable energy; control by rpm and positioning of the magnets



## High H-pressure mechanochemistry





Design completed Manufacturing will be completed mid-June Readiness review and operational approval is expected by the end of June

#### Maximum H-pressure 300 bar





## **Micelle self-assembly**



• The conventional strategy of using surfactant micelles as structure-directing templates (e.g., for metal oxide synthesis) can only work in aqueous solutions.



Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. *Nature*, **1992**, *359*, 710.

• Utilizing fluorohydrocarbon molecules that can form micelles in nonpolar organic solvents will facilitate synthesis of nanostructured metal hydride materials.



W. Huang , C. Jin , D. K. Derzon , T. A. Huber ,
J. A. Last , P. P. Provencio , A. S. Gopalan ,
M. Dugger, and D. Y. Sasaki. *J. Colloid Interface Sci.* 2004, *272*(2), 457.



## Solid state NMR



#### • Instruments:

- Chemagnetics Infinity and Varian NMR systems operated at 9.4 T and 14.1 T
- Triple resonance probes capable of MAS at speeds up to 3M rpm
- Variable temperature capabilities

### Advanced solid state methods:

- High resolution techniques for solids: magic angle spinning (MAS), multiple quantum (MQ) MAS, homo- and hetero-nuclear decoupling
- Multi-resonance, multi-dimensional experiments for studying the internuclear correlations
- Nuclei: <sup>1</sup>H, <sup>7</sup>Li, <sup>11</sup>B, <sup>23</sup>Na, and <sup>27</sup>Al

### Arsenal used to:

- Identify the composition, local environment and structure of complex hydrides
- Follow the mechanochemically and thermally induced transformations of these materials
- Study the hydrogen dynamics and solid state hydrogenation-dehydrogenation processes

V.P. Balema, J.W. Wiench, K.W. Dennis, M. Pruski, V.K. Pecharsky, *J. Alloys Comp.* 329 (2001) 108-114 J.W. Wiench, V.P. Balema, V.K. Pecharsky, M. Pruski, *J. Solid State Chem.* 177 (2004) 648-653



## Super-cell methodology





## NaAlH<sub>4</sub> 2x2x1 96 atoms total





## **Fundamental issues**





- Covalent M-H bonds are strong
- "Destabilization" is required
- Multiple-stage hydrogenation and dehydrogenation reactions
- Tuning thermodynamics by chemical substitutions is far from trivial
- Long-range mass transport and detrimental kinetics





## Can Al-H bonds be destablized without Ti-doping?







## **Destabilization by synergy**







## The products are nanocrystals



# Overall dehydrogenation reaction

AI

| the ball<br>milling,<br>min | 4            | 2            |            |            |   |       |
|-----------------------------|--------------|--------------|------------|------------|---|-------|
| 0 min                       | +            | +            | _          | -          |   | trace |
| 4 min                       | $\downarrow$ | $\downarrow$ | +          | +          | + | _     |
| 12 min                      | $\downarrow$ | $\downarrow$ | $\uparrow$ | $\uparrow$ | + | _     |
| 30 min                      | -            | -            | -          | +          | + | _     |
| 30 min in a SPEX            |              |              |            |            |   |       |

l i<sub>s</sub>AlH<sub>a</sub>

AIN

I iH

LiAIH.

LiNH

Time of



Only 4.3 wt.%  $H_2$  may be obtained mechanochemically from

Ti-destabilized LiAlH₄ [Balema et al., Chem Comm. 1665 (2000)]



15





$$\begin{array}{ll} \mathsf{AI}_{(\mathrm{trace})} + \mathsf{LiNH}_2 \rightarrow \mathsf{AIN} + \mathsf{LiH} + \frac{1}{2}\mathsf{H}_2 \uparrow & [2 \text{ wt.\% H}_2 (1:1)] \\ \\ \mathsf{LiAIH}_4 + 2\mathsf{LiH} \rightarrow \mathsf{Li}_3 \mathsf{AIH}_6 & \\ \\ \mathsf{Li}_3 \mathsf{AIH}_6 + \mathsf{LiNH}_2 \rightarrow \mathsf{AIN} + 4\mathsf{LiH} + 2\mathsf{H}_2 \uparrow & [5.2 \text{ wt.\% H}_2] \\ \\ \\ \mathsf{LiAIH}_4 + \mathsf{LiNH}_2 \rightarrow \mathsf{AIN} + 2\mathsf{LiH} + 2\mathsf{H}_2 \uparrow & [6.6 \text{ wt.\% H}_2] \end{array}$$

All of these reaction pathways have been verified experimentally There is a competition between different reaction pathways Other pathways are possible Working with theorists in order to establish the most favorable energetics



## Mechanochemistry of related complex hydride systems



Intensity

AMES LABORATORY



# Mechanochemsirty of alanate-

LiAlH<sub>4</sub>+C(carbon black) (1:1) ball milling 24h





# Mechanochemisrty of alanate-

LiAIH4+C(graphite) (1:1) ball milling 24h



 $3\text{LiAIH}_4 \xrightarrow{C(\text{graphite})} \text{Li}_3\text{AIH}_6 + 2\text{AI} + 3\text{H}_2^{\uparrow} (incomplete)$ 

Covalent plus  $\pi$  C-C bonds Working with theorists to understand the role of C-C bonding in the activity of carbon



- Doping (e.g., with TiHal<sub>3</sub>) not needed
- Synergy between LiAIH<sub>4</sub> and LiNH<sub>2</sub>
- Related systems exhibit similar effects
- Nearly 33% more hydrogen released quickly and in a "single" step compared to TiCl<sub>3</sub>-doped LiAlH<sub>4</sub>
- No heating, easy control of hydrogen release by controlling mechanical energy
- Hydrogen release/uptake is fundamentally reversible
- Nanocrystallinity = short diffusion paths
- Mechanochemically promoted rehydrogenation offers a possibility to maintain nanocrystallinity of a fully hydrided material



## Controlled nanostructuring



- Initial difficulties in synthesis of the needed fluorohydrocarbon molecules
- Demonstrated effect of fluorohydrocarbon molecules as structure-directing templates



Fluorohydrocarbon-templated

Without the fluorohydrocarbon template





- In concert with theoretical predictions, explore mechanochemistry of novel mixed complex hydride systems
- In collaboration with theoretical and computation effort establish reaction mechanisms
- Thermodynamic and kinetic studies using (PCT PRO delivery is scheduled at the end of May, safety and readiness review is scheduled at the end of June)
- High H-pressure mechanochemical processing to establish reversibility of the most interesting systems